理论: 图论(7): 无圈图的最短路径和关键路径

总括

在我们不知道图的类型(有圈无圈、有负圈无负圈)的时候, Ford算法和上文中Dijkstra算法的优化版会给予我们一种通用的解法, 但是我们要注意到他们的时间复杂度为0(E * V);

这个时间的耗费是巨大的, 所以在我们知道足够的限制条件时我们就可以细化情况, 单独提出无环图这样的一个特例, 优化出时间复杂度为O(N)的线性算法。

除此之外, 无向图的应用中还有关键的一点就是关键路径的求解, 他往往用来求解工程中, 某一事件的优先关系
·
·
·
·

无圈图最短路径

说到无圈图的最短路径, 和dp有极大的相似程度。

如果知道图是无圈的, 那么我们通过将图的存储方式加以改变, 或者叫做顶点选取法则, 来改进Dijstra算法。 新的法则说白了就是这个无圈图的拓扑排序。 因为这个拓扑排序的建立和最短路径的选择可以同时完成时间复杂度近似于O(N)(队列优化下), 所以这个算法的时间复杂度近似于O(N);

简要的证明一下:当一个顶点V被选取之后, 按照拓扑排序的选取法则, 他没有从未知顶点发出并进入V的边, 因此他的距离为d是已经确定的, 这个距离是已经确定的, 所以这种算法是可行的。

为了下面便于讲解, 我们可以假设这样的一种情况——你在某个下坡滑雪, 你想要从a点到b点, 但是只能走下坡路,这个例子显然不可能有圈(大家可以看看我的前几篇关于DP的博客——数塔问题)
无圈图的最短路径本质是就是拓扑排序的顺序的选优 或者简单的归结于DP的数

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 图论可以用来解决最短路径问题。最短路径问题是指在一个图中,从一个起点到达一个终点,需要经过若干个节点,每个节点之间有一定的距离或权值,求出从起点到终点的最短路径图论中有多种算法可以解决最短路径问题,其中最常用的是Dijkstra算法和Floyd算法。Dijkstra算法是一种贪心算法,通过不断更新起点到各个节点的距离,最终得到起点到终点的最短路径。Floyd算法则是一种动态规划算法,通过不断更新任意两个节点之间的距离,最终得到起点到终点的最短路径。这些算法可以应用于很多实际问题,如路线规划、网络优化等。 ### 回答2: 图论可以用于解决最短路径问题。最短路径问题是在一个加权有向图中找到从一个起点到一个终点的最短路径图论中的最短路径算法有很多种,其中最著名的是狄克斯特拉算法和弗洛伊德算法。 狄克斯特拉算法是一种单源最短路径算法,可用于解决从一个起点到其他所有顶点的最短路径问题。该算法基于贪心策略,通过逐步扩展当前已知的最短路径来找到从起点到每个顶点的最短路径。狄克斯特拉算法适用于没有负权边的图。 弗洛伊德算法是一种多源最短路径算法,可用于解决任意两个顶点之间的最短路径问题。该算法利用一个动态规划的思想,通过判断经过不同中间顶点的路径是否比直接连接的路径更短,来逐步更新每对顶点之间的最短路径。弗洛伊德算法适用于带负权边的图。 这些算法的核心思想是通过遍历图中的节点和边,使用适当的数据结构(如优先队列)来存储已知的最短路径和待处理的节点,从而逐步更新最短路径并找到最优解。 最短路径问题在现实生活中有很多应用,如导航系统中的最短驾驶路径、通信网络中的最短数据传输路径等。图论中的最短路径算法提供了一种有效的方式来解决这些实际问题,使得我们能够通过数学方法找到最短路径并进行优化。 ### 回答3: 图论是研究图的结构和性质的数学理论,而最短路径是在给定的图中找到两个顶点之间的最短路径图论中有许多算法可以用来解决最短路径问题。 其中最经典的算法是迪杰斯特拉算法(Dijkstra's algorithm)。该算法通过计算从起点到所有其他顶点的距离,并使用一个集合来记录已经找到的最短路径,逐步扩展这个集合,直到找到起点到其他所有顶点的最短路径。迪杰斯特拉算法使用了一个优先队列来选取下一个要处理的顶点,以保证每次都是处理当前距离起点最短的顶点,从而得到最短路径。 另外一个经常用于解决最短路径问题的算法是弗洛伊德算法(Floyd-Warshall algorithm)。该算法通过动态规划的方式计算出任意两个顶点之间的最短路径,在每一次的迭代中,算法选择是否使用中间顶点来缩短路径长度,最终得到最短路径矩阵。 除了这两个经典算法外,还有其他一些算法,如贝尔曼-福特算法(Bellman-Ford algorithm)、A*搜索算法(A* search algorithm)等,它们都可以用图论来解决最短路径问题。 总之,图论最短路径中的应用主要是通过不同的算法来计算出图中两个顶点之间的最短路径。这些算法都利用了图的结构和性质,通过不同的策略和方法来找到最短路径,从而解决实际中的问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值