理论: 图论(7): 无圈图的最短路径和关键路径

本文探讨了无圈图的最短路径和关键路径问题。在无圈图中,最短路径可以通过拓扑排序和Dijkstra算法优化实现O(N)的时间复杂度。关键路径分析用于确定项目中影响整体进度的关键任务,通过计算每个节点的最大最小完成时间来确定。通过对动作节点图转化为事件节点图,可以有效地计算最早和最晚完成时间,并找出关键路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

总括

在我们不知道图的类型(有圈无圈、有负圈无负圈)的时候, Ford算法和上文中Dijkstra算法的优化版会给予我们一种通用的解法, 但是我们要注意到他们的时间复杂度为0(E * V);

这个时间的耗费是巨大的, 所以在我们知道足够的限制条件时我们就可以细化情况, 单独提出无环图这样的一个特例, 优化出时间复杂度为O(N)的线性算法。

除此之外, 无向图的应用中还有关键的一点就是关键路径的求解, 他往往用来求解工程中, 某一事件的优先关系
·
·
·
·

无圈图最短路径

说到无圈图的最短路径, 和dp有极大的相似程度。

如果知道图是无圈的, 那么我们通过将图的存储方式加以改变, 或者叫做顶点选取法则, 来改进Dijstra算法。 新的法则说白了就是这个无圈图的拓扑排序。 因为这个拓扑排序的建立和最短路径的选择可以同时完成时间复杂度近似于O(N)(队列优化下), 所以这个算法的时间复杂度近似于O(N);

简要的证明一下:当一个顶点V被选取之后, 按照拓扑排序的选取法则, 他没有从未知顶点发出并进入V的边, 因此他的距离为d是已经确定的, 这个距离是已经确定的, 所以这种算法是可行的。

为了下面便于讲解, 我们可以假设这样的一种情况——你在某个下坡滑雪, 你想要从a点到b点, 但是只能走下坡路,这个例子显然不可能有圈(大家可以看看我的前几篇关于DP的博客——数塔问题)
无圈图的最短路径本质是就是拓扑排序的顺序的选优 或者简单的归结于DP的数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值