18、IT领域常见术语与技术解析

IT领域常见术语与技术解析

1. 常见术语缩写解析

在IT领域,存在大量的术语缩写,这些缩写在日常交流和技术文档中频繁出现。以下是一些常见缩写及其含义:
| 缩写 | 全称 | 含义 |
| — | — | — |
| 4GL | Fourth - Generation Language | 第四代语言 |
| ACID | Atomicity, Consistency, Isolation, and Durability | 事务的原子性、一致性、隔离性和持久性 |
| ADO | Active Data Object | 活动数据对象(微软) |
| API | Application Programming Interface | 应用程序编程接口 |

有些缩写已成为通用名称,其全称因各种原因不再常用。例如,SOAP原指Simple Object Access Protocol,但由于它既不简单也不专门针对对象,全称已不再广泛使用。

2. 应用开发相关

2.1 应用转换为服务

将现有应用转换为服务是提升系统灵活性和可扩展性的重要手段。具体操作步骤如下:
1. 处理批处理流程 :对批处理流程进行优化,可缩短流程时间,甚至用在线处理替代批处理。例如,通过优化算法和并行处理,将原本耗时较长的批处理任务时间缩短。
2. 转换业务流程 :分析业务流程,将其拆分为可复用的服务组件。比如,将订单处理流程拆分为订单创建、支付处理、物流跟踪等服务。
3. 转换现有

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值