来总结一下:
1)先来说一个好玩的现象啊
并查集一个固定函数Union合并函数,之前我都是写
void Union(int a,int b)
{
int faa=find(a);
int fab=find(b);
if(faa!=fab)father[fab]=faa;
}
这样写,其他没问题,只有测试点三超时。
void Union(int a,int b)
{
int faa=find(a);
int fab=find(b);
if(faa!=fab)father[faa]=fab;
}
这样写,其他没问题,只有测试点四超时。
所以以后这样写:
(看你想让它们的根节点是最大的序号还是最小的序号,来写到底是大于还是小于)
void Union(int a,int b)
{
int faa=find(a);
int fab=find(b);
if(faa<fab) father[fab]=faa;
else father[faa]=fab;
}
2)直接用set容器来记录个数和都有谁,比用一个标记数组visit和flag强多了,不过唯一一个缺点就是对时间的耗费更高。
题目描述:
在一个社区里,每个人都有自己的小圈子,还可能同时属于很多不同的朋友圈。我们认为朋友的朋友都算在一个部落里,于是要请你统计一下,在一个给定社区中,到底有多少个互不相交的部落?并且检查任意两个人是否属于同一个部落。
输入格式:
输入在第一行给出一个正整数N(≤10 4 ),是已知小圈子的个数。随后N行,每行按下列格式给出一个小圈子里的人:
K P[1] P[2] ⋯ P[K]
其中K是小圈子里的人数,P[i](i=1,⋯,K)是小圈子里每个人的编号。这里所有人的编号从1开始连续编号,最大编号不会超过10 4 。
之后一行给出一个非负整数Q(≤10 4 ),是查询次数。随后Q行,每行给出一对被查询的人的编号。
输出格式:
首先在一行中输出这个社区的总人数、以及互不相交的部落的个数。随后对每一次查询,如果他们属于同一个部落,则在一行中输出Y,否则输出N。
输入样例:
4
3 10 1 2
2 3 4
4 1 5 7 8
3 9 6 4
2
10 5
3 7
输出样例:
10 2
Y
N
代码如下:
#include<iostream>
#include<set>
using namespace std;
int father[10001];
int find(int x)
{
while(x!=father[x]) x=father[x];
return x;
}
void Union(int a,int b)
{
int faa=find(a);
int fab=find(b);
if(faa<fab) father[fab]=faa;
else father[faa]=fab;
}
int main()
{
int n,m,k,a,b;
scanf("%d",&n);
for(int i=0;i<10001;i++) father[i]=i;
set<int>s;
for(int i=0;i<n;i++){
scanf("%d%d",&m,&a);
s.insert(a);
for(int j=0;j<m-1;j++){
scanf("%d",&b);
s.insert(b);
Union(a,b);
a=b;
}
}
set<int>s2;
for(auto it=s.begin();it!=s.end();it++)
s2.insert(find(*it));
printf("%d %d\n",s.size(),s2.size());
scanf("%d",&k);
for(int i=0;i<k;i++){
scanf("%d%d",&a,&b);
if(find(a)==find(b)) printf("Y\n");
else printf("N\n");
}
return 0;
}