并查集(Union-Find)算法详解

并查集(Union-Find)是解决动态连通性问题的一类非常高效的数据结构。本文中,我将尽我所能用最简单,最清晰的逻辑展示出并查集的构造过程,同时还将对其中的关键步骤给出相应的Python代码。

动态连通性

可以想象一张地图上有很多点,有些点之间是有道路相互联通的,而有些点则没有。如果我们现在要从点A走向点B,那么一个关键的问题就是判断我们能否从A走到B呢?换句话说,A和B是否是连通的。这是动态连通性最基本的诉求。现在给出一组数据,其中每个元素都是一对“点”,代表这对点之间是联通的,我们需要设计一个算法,让计算机依次读取这些数据,最后判断出其中任意两点是否连通。注意,并查集所涉及的动态连通性只是考虑“是否连通”这一二值判别问题,而不涉及连通的路径到底是什么。后者不在本文的考虑范围之内。

举个例子,比如下图。为了简单起见,我们以整数 0~9 表示图中的10个点,然后给出两两连通的数据如下:[(4, 3), (3, 8), (6, 5), (9, 4), (2, 1), (8, 9), (5, 0), (7, 2), (6, 1), (6, 7)]


我们将这些“点对”依次通过画图连接的方式在图中表示出来。当然,如果其中某“对”点本身就是连通的,比如点对 (8,9) ,还有 (6,7) 在连接前就已经是连通的,我们可以自动忽略这种情况。通过这张图,可以直观的看出,有些点对,像0与1是相互连通的,而有些像0与9是不连通的。现在的问题是,如何让计算机读取这些数据来构建一种数据结构(合并连通点),然后在这种数据结构上高效的做出对某个点对是否连通的判断(查询连通性)。这也就是并查集名字的由来了。

为了实现上面所描述的功能,一个简单的思路就是分组。也就是说,我们可以把相互连通的点看成一个组,如果现在查询的点对分别在不同的组中,则这个点对不连通,否则连通。下面我们先来简单分析一下这种操作的具体过程,分“并”和“查”两个方面来分析。为了方便描述,我这里先举一个例子:比如上图的10个点,现在就令每个点的值为其初始组别,我们可以得到下面这个表:

element 0 1 2 3 4 5 6 7 8 9
group number 0 1 2 3 4 5 6 7 8 9

现在,“并”的操作可以这样来描述:观察第一个点对 (4,3) ,于是先找到点4和3,发现所在组别不一样,再将点4和3的组别都变成3(当然都变成4也行,这个随意设计),然后就产生了如下的表:

<
element 0 1 2 3 4 5 6 7 8 9
  • 30
    点赞
  • 110
    收藏
    觉得还不错? 一键收藏
  • 6
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值