平衡二叉树——AVL树

        二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查 找元素相当于在顺序表中搜索元素,效率低下 。因此,两位俄罗斯的数学家 G.M.Adelson-Velskii 和E.M.Landis 1962 年 发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右 子树高度之差的绝对值不超过 1( 需要对树中的结点进行调整 ) ,即可降低树的高度,从而减少平均 搜索长度。
一棵 AVL 树或者是空树,或者是具有以下性质的二叉搜索树:
它的左右子树都是 AVL
左右子树高度之差 ( 简称平衡因子 ) 的绝对值不超过 1(-1/0)
如果一棵二叉搜索树是高度平衡的,它就是 AVL 树。如果它有 n 个结点,其高度可保持在 O(log_2 n) ,搜索时间复杂度 O(log_2 n)

树的构建——

1.节点构建:

        了解了AVL树的构建后,首先可以得出它每个节点必须同二叉树一样保存左右节点指针,还有平衡因子。我们后续需要进行旋转,则必须还需要一个指向父亲的指针(根节点为nullptr)。这样就造就了AVL树必须采用三叉链的结构。

template<class K,class V>
struct AVLTreeNode
{
    AVLTreeNode<K,V>* _left;
    AVLTreeNode<K,V>* _right;
    AVLTreeNode<K,V>* _parent;

    pair<K,V> _kv;    //存储的为pair,以构建map与set为例
    int _bf;          //平衡因子

    AVLTreeNode(const pair<K,V>& kv)
        :_left(nullptr)
        ,_right(nullptr)
        ,_parent(nullptr)
        ,_kv(kv)
        ,_bf(0)
    {}
};

这里也不一定要用Key,Value形式,也可以用template<class T>替换模板,下面依次修改就好。

 树的插入——

        树的插入同搜索二叉树一样,与根相比,比根节点大往右边走,比根节点小往左边走,再下来与路径上节点比较,与根比较同理。走到nullptr为止。这时我们就可以开始插入。但插入过后并不是置之不理,不然就同搜索树一样了,我们得保持树的高度平衡——即看旋转因子的大小。

我们来看看节点的插入的规则——

节点(pCur)插入后,pParent的平衡因子一定需要调整,在插入之前,pParent
的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:
 1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可
 2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可
此时:pParent的平衡因子可能有三种情况:0,正负1, 正负2
 1. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整
成0,此时满足 AVL树的性质,插入成功
 2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更
新成正负1,此 时以pParent为根的树的高度增加,需要继续向上更新
 3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进
行旋转处理
template<class K,class V>
struct AVLTree
{
	typedef AVLTreeNode<K, V> Node;
public:
	void insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			root = new Node(kv);
			return true;
		}

		//找节点空位置
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else
				return false;
		}

		//挂节点
		cur = new Node(kv);
		if (parent->_kv.first < kv.first)
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}
		cur->_parent = parent;

        //保持树的平衡,对树进行旋转——
        //...
private:
	Node* _root = nullptr;
};

树的旋转——

控制平衡,并更新平衡因子
        更新规则:
        新增在左,则parent->_bf--;新增在右,则parent->_bf++
        1,新增在右,parent->bf++;新增在左,parent->bf-
        2.更新后,parent->bf == 1 or -1, 说明parent插入前的平街因子是0,
        说明左右子树高度相等,插入后有一边高,parent高度变了,需要继续往上更新
        3、更新后,parent->bf == 0,说明parent插入前的平衡因子是1 or -1,
         说明左右子树一边高一边低,插入后两边一样高,插入填上了矮了那边。parent
        所在子树高度不变,不需要樂续往上更新
        4 更新后,parent->bf == 2 or -2,说明parent插入前的平衡因子是1or - 1,己经平衡临值,
         插入变成2or - 2,打破平衡parent所在子树需要旋转处理。
        5.更新后,parent->bf>2or< - 2的值,不可能,如果存在,
        则说明插入前就不是AVL树,需要去检查之前操作的问题。

于是我们可以用一个while循环来进行更新——

//...(将以下代码放置在上述代码残缺位置)
while (parent)
		{
			if (cur == parent->_right)
			{
				parent->_bf++;
			}
			else
			{
				parent->_bf--;
			}
			if (parent->_bf == 0)
			{
				break;
			}
			else if (abs(parent->_bf) == 1)
			{
				parent = parent->_parent;
				cur = cur->_parent;
			}
			else if (abs(parent->_bf) == 2)
			{
				//不平衡,需要旋转
				if (parent->_bf == 2 && cur->_bf == 1)
				{
					RotateL(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == -1)
				{
					RotateR(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == 1)
				{
					RotateLR(parent);
				}
				else if (parent->_bf == 2 && cur->_bf == -1)
				{
					RotateRL(parent);
				}
			}
			else	//出现在这里说明之前的平衡因子就已经不平衡
				assert(false);
		}
旋转方式:
上图在插入前, AVL 树是平衡的,新节点插入到 30 的左子树 ( 注意:此处不是左孩子 ) 中, 30 左子树增加 了一层,导致以60 为根的二叉树不平衡,要让 60 平衡,只能将 60 左子树的高度减少一层,右子 树增加一层,即将左子树往上提,这样60 转下来,因为 60 30 大,只能将其放在 30 的右子树,而如果 30 有 右子树,右子树根的值一定大于30 ,小于 60 ,只能将其放在 60 的左子树,旋转完成后,更新节点 的平衡因子即可。在旋转过程中,有以下几种情况需要考虑:
  1. 30 节点的右孩子可能存在,也可能不存在
  2. 60 可能是根节点,也可能是子树
    如果是根节点,旋转完成后,要更新根节点
    如果是子树,可能是某个节点的左子树,也可能是右子树
void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		
		parent->_left = subLR;
		if (subLR)	//注意判断是否为空
		{
			subLR->_parent = subL;
		}
		Node* pparent = parent->_parent;	//根不一定为parent,则必须记录parent的父亲节点,以便在旋转后链接
		
		subL->_right = parent;
		parent->_parent = subL;

		if (_root == parent)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (pparent->_left == parent)
			{
				pparent->_left = subL;
			}
			else
			{
				pparent->_right = subL;
			}
			subL->_parent = pparent;
		}

		subL->_bf = parent->_bf = 0;
	}

 情况和右单旋类似,可参照右单旋方式——

void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		if (subRL)
		{
			subRL->_parent = parent;
		}
		Node* pparent = parent->_parent;
		
		subR->_left = parent;
		parent->_parent = subR;

		if (parent == _root)
		{
			parent = subR;
			subR->_parent = nullptr;
		}
		else
		{
			if (parent = pparent->_left)
			{
				pparent->_left = subR;
			}
			else
			{
				pparent->_right = subR;
			}
			subR->_parent = pparent;
		}
		subR->_bf = parent->_bf = 0;
	}

但是,当我们插入节点不是最左或者最右节点时,我们仅仅依靠单旋并不能解决所有问题——

比如以上情况,仅仅依靠单旋,只能使其陷入一个死循环,而高度平衡的问题并未得到有效解决。这时候我们就可以考虑使用两次旋转,分别以30为轴点进行左单旋,再以60为轴点进行右单旋,如下如所示——

void RotateLR(Node* parent)
{
	Node* subL = parent->_left;
	Node* subLR = subL->_right;
	int bf = subLR->_bf;

	RotateL(parent->_left);	//复用之前代码
	RotateR(parent);

	subLR->_bf = 0;
	if (bf == 1)	//新增在右子树
	{
		parent->_bf = 0;
		subL->_bf = -1;
	}
	else if (bf == -1)	//新增在左子树
	{
		parent->_bf = 1;
		subL->_bf = 0;
	}
	else if (bf == 0)	//最初只有根节点和左孩子,自己为新增
	{
		parent->_bf = 0;
		subL->_bf = 0;
	}
	else
	{
		assert(false);
	}
}
void RotateRL(Node* parent)
{
	Node* subR = parent->_right;
	Node* subRL = subR->_left;

	int bf = subRL->_bf;

	RotateR(parent->_right);
	RotateL(parent);

	subRL->_bf = 0;
	if (bf == 1)
	{
		subR->_bf = 0;
		parent->_bf = -1;
	}
	else if (bf == -1)
	{
		subR->_bf = 1;
		parent->_bf = 0;
	}
	else if (bf == 0)
	{
		parent->_bf = 0;
		subR->_bf = 0;
	}
	else
	{
		assert(false);
	}
}

关于AVL树的性能——

AVL 树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过 1 ,这样可以保证查询时高效的时间复杂度,即log_2 (N) 。但是如果要对 AVL 树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的( 即不会改变 ) ,可以考虑 AVL 树,但一个结构经常修改,就不太适合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值