【论文】【BLADE-FL 】When Federated Learning Meets Blockchain: A New Distributed Learning Paradig

本文介绍了BLADE-FL,一个结合区块链的去中心化联邦学习框架,解决了隐私保护、资源分配和懒惰节点等问题。BLADE-FL通过智能合约实现任务发布和激励机制,并通过自适应噪声和PN序列检测确保模型安全性和懒节点检测的有效性。
摘要由CSDN通过智能技术生成
When Federated Learning Meets Blockchain: A New Distributed Learning Paradigm
贡献 BLADE-FL(LearningChain)

1、设计BLADE-FL(blockchain assisted decentralized FL)框架(完全去中心化,全节点既负责训练又负责挖矿);
2、并探讨了BLADE-FL中的问题(隐私、资源分配、懒客户的检测)并给出解决方案;
3、实验证明解决方案的有效性;

BLADE-FL框架介绍

完全去中心化:所有节点都参与训练ML模型并负责挖矿(发布聚合结果)角色切换

工作流

  1. 任务发布和节点选择
  2. 本地模型广播( 模型更新+计算时间+本地数据大小)—隐私泄露问题
  3. 模型聚合(全节点聚合)
  4. 区块生成(训练节点变成矿工节点)-- 节点资源分配问题(训练+挖矿)
  5. 区块传播 – 懒节点问题
  6. 全局模型的下载和更新
  7. 奖励分配

智能合约功能

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值