【论文】【BLADE-FL 】When Federated Learning Meets Blockchain: A New Distributed Learning Paradig

本文介绍了BLADE-FL,一个结合区块链的去中心化联邦学习框架,解决了隐私保护、资源分配和懒惰节点等问题。BLADE-FL通过智能合约实现任务发布和激励机制,并通过自适应噪声和PN序列检测确保模型安全性和懒节点检测的有效性。
摘要由CSDN通过智能技术生成
When Federated Learning Meets Blockchain: A New Distributed Learning Paradigm
贡献 BLADE-FL(LearningChain)

1、设计BLADE-FL(blockchain assisted decentralized FL)框架(完全去中心化,全节点既负责训练又负责挖矿);
2、并探讨了BLADE-FL中的问题(隐私、资源分配、懒客户的检测)并给出解决方案;
3、实验证明解决方案的有效性;

BLADE-FL框架介绍

完全去中心化:所有节点都参与训练ML模型并负责挖矿(发布聚合结果)角色切换

工作流

  1. 任务发布和节点选择
  2. 本地模型广播( 模型更新+计算时间+本地数据大小)—隐私泄露问题
  3. 模型聚合(全节点聚合)
  4. 区块生成(训练节点变成矿工节点)-- 节点资源分配问题(训练+挖矿)
  5. 区块传播 – 懒节点问题
  6. 全局模型的下载和更新
  7. 奖励分配

智能合约功能

Multi-objective evolutionary federated learning (MEFL) is a machine learning approach that combines the principles of multi-objective optimization and federated learning. Multi-objective optimization is a technique that aims to optimize multiple objectives simultaneously, while federated learning is a decentralized machine learning approach that allows multiple devices to train a model collaboratively without sharing their data. MEFL is designed to overcome the limitations of traditional federated learning approaches, which often suffer from issues related to privacy, communication, and scalability. By using multi-objective optimization, MEFL can optimize the performance of the federated learning algorithm while also addressing these issues. MEFL works by dividing the optimization problem into multiple objectives, such as minimizing the loss function, reducing communication costs, and preserving privacy. A genetic algorithm is then used to optimize these objectives simultaneously, producing a set of Pareto-optimal solutions that represent the trade-offs between the different objectives. These Pareto-optimal solutions can then be used to select the best model for deployment, depending on the specific requirements of the application. MEFL has been shown to be effective in a wide range of applications, including image classification, natural language processing, and speech recognition. Overall, MEFL represents a promising approach to federated learning that can improve the privacy, communication, and scalability of the algorithm while also optimizing its performance.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值