Keras
Samuel_0
这个作者很懒,什么都没留下…
展开
-
Keras多层感知器:印第安糖尿病人诊断
实例中使用的是Pima Indians Diabetes数据集,数据集有八项属性和对应输出:(1)怀孕次数(2)2小时口服葡萄糖耐量实验中血浆葡萄糖浓度(3)舒张压(4)三头肌皮褶皱厚度(5)2小时血清胰岛素(6)身体质量指数(7)糖尿病谱系功能(8)年龄(9)是否是糖尿病第九项是我们的输出层。数据集下载:数据集下载地址下面代码:from ke...原创 2018-10-29 18:42:54 · 1281 阅读 · 1 评论 -
国际旅行人数预测——使用多层感知器
这个例子是使用多层感知器来处理时间序列问题,例子来源于魏贞原老师的书。数据集使用的是国际旅行旅客人数数据集(international-airline-passengers)数据集下载:国际旅行旅客人数数据集(international-airline-passengers)利用matplotlib,我们先看一下实际数据的变化趋势。之后构建一个仅有一个隐藏层的多层感知器模型,并...原创 2018-11-05 15:44:28 · 2003 阅读 · 1 评论 -
训练过程中使用学习率衰减
随机梯度下降算法的性能与学习率有着直接的关系,这是因为学习率决定了参数移动到最优值时的速度。如果学习率过大很可能会越过最优值,如果学习率过小,优化的效率可能过低,收敛时间极长。那么一个很好的解决方案就是学习率衰减——即学习率随着训练的进行逐渐衰减。在训练过程开始时,使用较大的学习率,这样就能快速收敛;随着训练过程的进行,逐渐降低学习率,这样有助于找到最优解。目前两种较为流行的学习率衰减方法...原创 2018-11-05 15:14:14 · 9787 阅读 · 2 评论 -
在训练过程中加入Dropout
Dropout是在训练过程中,随机地忽略部分神经元——也就是说,在正向传播的过程中,这些被忽略的神经元对下游神经元的贡献效果暂时消失,在反向传播中,这些神经元也不会有任何权值的更新。Dropout的思想的出现,主要是为了解决过拟合的问题。虽然说采用组合方法,也就是训练多个模型,能够在一定程度上解决过拟合的问题,但是会带来非常大的时间开销,而Dropout可以很好的解决这个问题。在Keras...原创 2018-11-05 14:52:13 · 15447 阅读 · 0 评论 -
国际旅行人数预测——使用LSTM
时间序列问题增加了输入变量之间的序列依赖性,这样大大提升了模型的复杂程度。LSTM是循环神经网络的一种,可以成功地训练架构非常复杂的深度学习模型,用于处理时间序列问题。LSTM对输入数据的尺度十分敏感,特别是使用sigmoid(这是默认的)或者tanh作为激活函数的时候。下面代码中使用Scikit-Learn中的MinMaxScaler预处理类对数据集进行归一化处理,将数据缩放到0——1。...原创 2018-11-09 15:47:33 · 3544 阅读 · 4 评论 -
模型训练过程初步可视化
在训练深度学习模型时,Keras提供了对训练历史的默认回调方法——History回调。它记录了每个epoch的训练指标,包括有损失、准确度(分类问题),以及评估数据集的损失和准确度(这需要设置)。训练过程中的信息可以从训练模型的fit()函数的返回值获取。度量标准存储在返回对象的历史成员的字典中。"""将模型训练过程可视化"""from keras.models import Sequen...原创 2018-11-03 16:23:59 · 3462 阅读 · 0 评论 -
Keras保存与加载模型(JSON+HDF5)
在Keras中,有时候需要对模型进行序列化与反序列化。进行模型序列化时,会将模型结果与模型权重保存在不同的文件中,模型权重通常保存在HDF5文件中,模型的结构可以保存在JSON或者YAML文件中。后二者方法大同小异,这里以JSON为例说明一下Keras模型的保存与加载。from sklearn import datasetsimport numpy as npfrom keras.mod...原创 2018-10-31 17:08:37 · 11350 阅读 · 0 评论 -
利用Scikit-Learn为模型自动调参
通过Keras的包装类,借助Scikit-Learn的网格搜索算法评估神经网络模型的不同配置,并找到最佳评估性能的参数组合。在Scikit-Learn中的GridSearchCV需要一个字典类型的字段作为需要调参的参数,默认采用3折交叉验证的方法来评估算法。这里有四个参数需要调参,因此会产生4*3个模型。代码如下:"""通过Scikit-learn中的GridSearchCV进...原创 2018-10-31 16:37:30 · 1565 阅读 · 0 评论 -
K-Fold
这里码一下如何使用K折交叉验证来评估模型。KerasClassifier和KerasRegressor类使用参数build_fn,指定用来创建模型的函数的名称。因此这里必须定义一个函数,并通过函数来定义深度学习模型,编译并返回它。这里便是定义了create_model()函数。from keras.models import Sequentialfrom keras.layers im...原创 2018-10-31 15:29:37 · 636 阅读 · 0 评论 -
Keras多分类实例:鸢尾花
鸢尾花数据集具有4个数值型输入项目,并且数值具有相同的尺度,输出项目是鸢尾花的三个子类。这里使用的是Scikit-Learn中提供的数据集,省略了数据预处理的过程,如果在UCI上面下载的话要使用Pandas中的read_csv()函数导入数据,并使用Scikit-Learn的LabelEncoder将类别文本编辑成数值。这里的实例部分出自于魏贞原老师的书。from sklearn i...原创 2018-10-31 15:09:09 · 5516 阅读 · 3 评论 -
keras-contrib包安装以及kerasBi_LSTM
keras-contrib 安装:(pip install git+https://www.github.com/farizrahman4u/keras-contrib.git)码一下,学习学习 原文见:https://blog.csdn.net/qq_16912257/article/details/78969966转载 2018-12-10 19:57:24 · 2643 阅读 · 3 评论