二叉树的重构

二叉树的重构基于先序、中序或后序遍历,至少需要两种遍历来恢复结构。若非真二叉树,中序遍历必不可少。先序和中序遍历能确定根节点及左右子树,后序和中序遍历同样有效。在没有中序遍历时,若二叉树非真,无法重构。但真二叉树可依据先序和后序遍历重建,无歧义。
摘要由CSDN通过智能技术生成

二叉树的重构是指给定二叉树的先序遍历,中序遍历,后序遍历中的任意两者,要求恢复二叉树的结构。

其中,除非二叉树是真二叉树(即任一节点要么具有两个子节点,要么没有子节点),否则,必须要有中序遍历才能恢复二叉树的结构。

先序遍历+中序遍历:

后序遍历+中序遍历:

由图示可知,根据先序遍历或者后序遍历,可以确定根节点,再通过此根节点,再中序遍历中可以确定左子树和右子树,从而可以减小问题的规模,递归求解问题。

如果二叉树不是真二叉树,如果没有中序遍历,只有先序遍历和后序遍历是不能对二叉树进行重构的ÿ

二叉树重构可以使用递归的方式来实现。具体步骤如下: 1. 定义一个结构体来表示二叉树节点,包含节点值和左右子树两个指针。 ``` struct TreeNode { int val; TreeNode* left; TreeNode* right; TreeNode(int x) : val(x), left(NULL), right(NULL) {} }; ``` 2. 根据给定的前序遍历和中序遍历序列来重构二叉树。在前序遍历序列中,第一个元素为根节点,根据这个节点在中序遍历序列中找到根节点的位置,然后递归地重构左右子树。 ``` TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) { if (preorder.empty() || inorder.empty()) { return NULL; } int rootVal = preorder[0]; TreeNode* root = new TreeNode(rootVal); int rootIdx = find(inorder.begin(), inorder.end(), rootVal) - inorder.begin(); vector<int> leftInorder(inorder.begin(), inorder.begin() + rootIdx); vector<int> rightInorder(inorder.begin() + rootIdx + 1, inorder.end()); vector<int> leftPreorder(preorder.begin() + 1, preorder.begin() + 1 + leftInorder.size()); vector<int> rightPreorder(preorder.begin() + 1 + leftInorder.size(), preorder.end()); root->left = buildTree(leftPreorder, leftInorder); root->right = buildTree(rightPreorder, rightInorder); return root; } ``` 3. 在主函数中调用 buildTree() 函数,传入前序遍历和中序遍历序列,即可得到重构后的二叉树。 ``` int main() { vector<int> preorder = {1, 2, 4, 5, 3, 6}; vector<int> inorder = {4, 2, 5, 1, 3, 6}; TreeNode* root = buildTree(preorder, inorder); // do something with the reconstructed binary tree return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值