题目描述
给定一个字符串 s
,找到 s
中最长的回文子串。你可以假设 s
的最大长度为 1000。
示例 1:
输入: "babad"
输出: "bab"
注意: "aba" 也是一个有效答案。
示例 2:
输入: "cbbd"
输出: "bb"
题解
方法一:暴力法
思路
遍历所有子字符串,判断是否为回文字符串。
算法
public String longestPalindrome(String s) {
if(s == null || s.length() < 1) {
return "";
}
int start = 0;
int end = 0;
int len = 0;
for(int i=0;i<s.length();i++) {
for(int j=i;j<s.length();j++) {
if(isPalindrome(s, i, j)) {
if(j-i+1 > len) {
len = j-i+1;
start = i;
end = j;
}
}
}
}
return s.substring(start, end+1);
}
private boolean isPalindrome(String s, int left, int right) {
while(left < right) {
if(s.charAt(left) != s.charAt(right))
return false;
left++;
right--;
}
return true;
}
复杂度分析
-
时间复杂度:O(n^3)? 。
-
空间复杂度:常数?。
方法二:中心扩展法
思路
回文字符串具有左右两端相互对称的特点。如果回文字符串的长度为奇数,则对称中心为中间的一个字符;如果回文字符串的长度为偶数,则对称中心为中间的两个字符。两种情况分别如下图所示:
为了求一个字符串S的最长回文子字符串,可以依次以字符串S中的每个字符为回文子串的中间字符向两边扩散得到回文子串,并同时考虑回文子串长度为奇数和偶数的情况,求出该回文子串的长度并更新最大回文子串长度。
算法
方法expand以字符串s中的left、right位置的字符向两边扩散,得到以left和right为中心的回文子串的最大长度。当left=right时,表示回文子串的长度为奇数,当left=right-1时,表示回文子串的长度为偶数。
public String longestPalindrome(String s) {
if(s == null || s.length() < 1) {
return "";
}
int start = 0;
int end = 0;
int max = 0;
for(int i=0;i<s.length();i++) {
int len1 = expand(s, i, i);
int len2 = expand(s, i, i+1);
int len = Math.max(len1, len2);
if(len > max) {
max = len;
start = i - (len-1)/2;
end = i + len/2;
}
}
return s.substring(start, end + 1);
}
private int expand(String s, int left, int right) {
while(left >= 0 && right < s.length() && s.charAt(left) == s.charAt(right)) {
left--;
right++;
}
return right - left - 1;
}
复杂度分析
-
时间复杂度:O(n^2)? 。
-
空间复杂度:常数?。