题目描述
题解
方法一:暴力法
思路
逐个检查所有的子字符串,看它是否不含有重复的字符。
算法
假设有一个函数 boolean allUnique(String substring)
,如果substring
中的字符都是唯一的,它会返回 true,否则会返回 false。 我们可以遍历给定字符串 s
的所有可能的子字符串并调用函数 allUnique
。 如果返回值为 true,那么我们将会更新无重复字符子串的最大长度的答案。
public class Solution {
public int lengthOfLongestSubstring(String s) {
int n = s.length();
int ans = 0;
for (int i = 0; i < n; i++)
for (int j = i + 1; j <= n; j++)
if (allUnique(s, i, j))
ans = Math.max(ans, j - i);
return ans;
}
public boolean allUnique(String s, int start, int end) {
Set<Character> set = new HashSet<>();
for (int i = start; i < end; i++) {
Character ch = s.charAt(i);
if (set.contains(ch))
return false;
set.add(ch);
}
return true;
}
}
复杂度分析
-
时间复杂度:O(n^3) 。
-
空间复杂度:O(min(n,m)),我们需要 O(k) 的空间来检查子字符串中是否有重复字符,其中 k 表示
Set
的大小。而 Set 的大小取决于字符串 n 的大小以及字符集/字母 m 的大小。
方法二:
思路
方法一中的暴力法是逐个检查了所有的子字符串。其实这是没有必要的,对于substring(i,j)这个子字符串,如果它是含有重复字符的,那就没有必要再检查substring(i,j+1)这个字符串了。
算法
每次以start作为子字符串的开始下标,以end作为子字符串的结束下标。对于每一个start,在保证子字符串中没有重复字符的情况下一直增加end,直到遇到重复的字符为止。得到每一个start对应的无重复字符字符串的最大end,然后更新答案。
public int lengthOfLongestSubstring(String s) {
int max = 0;
Set<Character> set = new HashSet<Character>();
for(int start=0;start < s.length();start++) {
set.clear();
set.add(s.charAt(start));
int end = start + 1;
while(end < s.length()) {
if(!set.contains(s.charAt(end)))
set.add(s.charAt(end++));
else
break;
}
if(end - start > max)
max = end - start;
}
return max;
}
复杂度分析
-
时间复杂度:O(n^2) 。
-
空间复杂度:O(n)
方法三:滑动窗口
算法
方法二中如果从索引 i 到 j−1 之间的子字符串 substring(i,j) 检查到含有重复字符,将会把set清零,重新从i+1下标开始。其实这是没有必要的,我们只需要把set中的字符按照下标顺序依次移除直到不含有重复字符就可以了。整个操作类似于一个滑动窗口。
滑动窗口是数组/字符串问题中常用的抽象概念。 窗口通常是在数组/字符串中由开始和结束索引定义的一系列元素的集合,即 [i,j)(左闭,右开)。而滑动窗口是可以将两个边界向某一方向“滑动”的窗口。例如,我们将 [i,j) 向右滑动 1 个元素,则它将变为 [i+1,j+1)。
回到我们的问题,我们使用 HashSet 将字符存储在当前窗口 [i,j)(最初 j=i)中。 然后我们向右侧滑动索引 j,如果它不在 HashSet 中,我们会继续滑动 j。直到 s[j] 已经存在于 HashSet 中。此时,我们找到的没有重复字符的最长子字符串将会以索引 i 开头。如果我们对所有的 i 这样做,就可以得到答案。
public int lengthOfLongestSubstring(String s) {
int max = 0;
int start = 0;
int end = 0;
int n = s.length();
Set<Character> set = new HashSet<Character>();
while(start < n && end < n) {
if(!set.contains(s.charAt(end))) {
set.add(s.charAt(end++));
max = Math.max(max, end - start);
} else {
set.remove(s.charAt(start++));
}
}
return max;
}
复杂度分析
-
时间复杂度:O(n)。
-
空间复杂度:O(min(m,n)),与之前的方法一相同。滑动窗口法需要 O(k) 的空间,其中 k 表示
Set
的大小。而 Set 的大小取决于字符串 n 的大小以及字符集 / 字母 m 的大小。
方法四:优化的滑动窗口
上述的方法最多需要执行 2n 个步骤。事实上,它可以被进一步优化为仅需要 n 个步骤。我们可以定义字符到索引的映射,而不是使用集合来判断一个字符是否存在。 当我们找到重复的字符时,我们可以立即跳过该窗口。
也就是说,如果 s[j] 在 [i,j) 范围内有与 j′ 重复的字符,我们不需要逐渐增加 i 。 我们可以直接跳过 [i,j′] 范围内的所有元素,并将 i 变为 j′+1。
Java(使用 HashMap)
public int lengthOfLongestSubstring(String s) {
int max = 0;
Map<Character, Integer> map = new HashMap<Character, Integer>();
int start = 0;
int end = 0;
while(end < s.length()) {
if(map.containsKey(s.charAt(end))) {
start = Math.max(start, map.get(s.charAt(end)));
}
if(end - start + 1 > max)
max = end - start + 1;
map.put(s.charAt(end), end+1);
end++;
}
return max;
}
Java(假设字符集为 ASCII 128)
以前的我们都没有对字符串 s
所使用的字符集进行假设。
当我们知道该字符集比较小的时侯,我们可以用一个整数数组作为直接访问表来替换 Map
。
常用的表如下所示:
int [26]
用于字母 ‘a’ - ‘z’ 或 ‘A’ - ‘Z’int [128]
用于ASCII码int [256]
用于扩展ASCII码
public class Solution {
public int lengthOfLongestSubstring(String s) {
int n = s.length(), ans = 0;
int[] index = new int[128]; // current index of character
// try to extend the range [i, j]
for (int j = 0, i = 0; j < n; j++) {
i = Math.max(index[s.charAt(j)], i);
ans = Math.max(ans, j - i + 1);
index[s.charAt(j)] = j + 1;
}
return ans;
}
}
复杂度分析
-
时间复杂度:O(n),索引 j 将会迭代 n 次。
-
空间复杂度(HashMap):O(min(m,n)),与之前的方法相同。
-
空间复杂度(Table):O(m),m 是字符集的大小。