最短路径问题

最短路径问题

问题

如果从图中某一顶点(源点)到达另一顶点(终点)的路径可能不止一条,如何找到一条路径使得沿此路径上各边的权值总和(称为路径长度)达到最小。

实例

用Floyd算法求解下图各个顶点的最短距离。写出Floyd算法的伪代码和给出距离矩阵(顶点之间的最短距离矩阵),按实验报告模板编写算法。

在这里插入图片描述

Floyd(弗洛伊德)算法

算法思想:
从任意节点i到任意节点j的最短路径不外乎2种可能:1)直接从节点i到节点j,2)从节点i经过若干个节点k到节点j。所以,我们假设arcs(i,j)为节点i到节点j的最短路径的距离,对于每一个节点k,我们检查arcs(i,k) + arcs(k,j) < arcs(i,j)是否成立,如果成立,证明从节点i到节点k再到节点j的路径比节点i直接到节点j的路径短,我们便设置arcs(i,j) = arcs(i,k) + arcs(k,j),这样一来,当我们遍历完所有节点k,arcs(i,j)中记录的便是节点i到节点j的最短路径的距离。
在这里插入图片描述

实现

void floyd() {
	FILE *fin;
	int graph[MAX_SIZE][MAX_SIZE] = { 0 };//邻接矩阵
	int vn, en;//点数、边数
	int startV, endV, w;//起始点、终点、权值
	int i, j, k;
	fin = fopen("input.txt", "r");
	fscanf(fin, "%d %d", &vn, &en);
	//初始化图
	for (i = 0; i < vn; i++) {
		for (j = 0; j < vn; j++) {
			if (i != j) {
				graph[i][j] = MAX_WEIGHT;
			}
			else {
				graph[i][j] = 0;
			}
		}
	}
	//读图
	for (i = 0; i < en; i++) {
		fscanf(fin, "%d %d %d", &startV, &endV, &w);
		graph[startV - 1][endV - 1] = w;
	}
	//Floyd算法
	for (k = 0; k < vn; k++) {
		//k为过度点
		for (i = 0; i < vn; i++) {
			for (j = 0; j < vn; j++) {
				//当通过过渡点的路径小于当前最短路径时,更新最短路径
				if (graph[i][k] + graph[k][j] < graph[i][j]) {
					graph[i][j] = graph[i][k] + graph[k][j];
				}
			}
		}
		//第k次更新结束

		printf("并入点%d后\n", k + 1);

		for (i = 0; i < vn; i++) {
			for (j = 0; j < vn; j++) {
				printf("%5d", graph[i][j]);
			}
			printf("\n");
		}

	}
	printf("注:%d表示不可达\n",MAX_WEIGHT);
}

Dijkstra(迪克斯特拉)算法

算法思想:
设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。
在这里插入图片描述

实现

void dijkstra() {
	FILE *fin;
	int graph[MAX_SIZE][MAX_SIZE] = { 0 };//邻接矩阵
	int vn, en;//点数、边数
	int startV, endV, w;//起始点、终点、权值
	int i, j, k;
	int d[10];//保存最短路径长度
	int final[10];//若final[i] = 1则说明 顶点vi已在集合S中
	int origin;//起始点
	fin = fopen("input2.txt", "r");
	fscanf(fin, "%d %d", &vn, &en);
	//初始化图
	for (i = 0; i < vn; i++) {
		for (j = 0; j < vn; j++) {
			if (i != j) {
				graph[i][j] = MAX_WEIGHT;
			}
			else {
				graph[i][j] = 0;
			}
		}
	}
	//读图
	for (i = 0; i < en; i++) {
		fscanf(fin, "%d %d %d", &startV, &endV, &w);
		graph[startV - 1][endV - 1] = w;
	}
	printf("请输入起始点:");
	scanf("%d",&origin);
	origin = origin - 1;
	//Dijkstra算法
	//初始化建立可达关系表
	for (i = 0; i < vn; i++) {
		final[i] = 0;
		d[i] = graph[origin][i];
	}
	//初始化 起始点属于集合S
	d[origin] = 0;
	final[origin] = 1;
	//开始主循环 每次求得起始点到某个顶点v的最短路径 并加v到集合S中
	for (i = 1; i < vn; i++) {
		int min = MAX_WEIGHT;
		//选择当前出离起始点最近且不在集合S中的顶点v
		for (j = 0; j < vn; j++) {
			if (!final[j]) {
				if (d[j]<min) {
					k = j;
					min = d[j];
				}
			}
		}
		final[k] = 1;//选出该点后加入到合集S中
		//更新当前最短路径和距离
		for (j = 0; j < vn; j++) {
			if (!final[j] && (min + graph[k][j] < d[j])&&graph[k][j]!=0) {
				d[j] = min + graph[k][j];
			}
		}
	}
	for (i = 0; i < vn; i++) {
		printf("从点%d 到点%d 的最短路径为 %d\n", origin+1,i+1, d[i]);
	}
	printf("注:%d表示不可达\n", MAX_WEIGHT);
}

github源码地址

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值