Leetcode 51. N-Queens 52. N-Queens II

The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.

Given an integer n, return all distinct solutions to the n-queens puzzle.

Each solution contains a distinct board configuration of the n-queens' placement, where 'Q' and '.' both indicate a queen and an empty space respectively.

For example,
There exist two distinct solutions to the 4-queens puzzle:

[
 [".Q..",  // Solution 1
  "...Q",
  "Q...",
  "..Q."],

 ["..Q.",  // Solution 2
  "Q...",
  "...Q",
  ".Q.."]
]

n皇后问题就是找到所有的可行解,首先应该有一个判断是否可以在当前位置放置Q的函数,称作valid,然后一行一行的放置Q,在每一行放置Q的时候,都从i到n遍历一遍,因为Q放在任一个位置都是可能的,所以为了找全都要便利一遍,需要注意的是,在这一行的这个位置放置完之后,去查看下一行放置,再返回本行时,记得将这个位置的Q拿掉:

	public List<List<String>> solveNQueens(int n) {
		List<List<String>> result = new ArrayList<List<String>>();
		char[][] index = new char[n][n];
		for(int j=0;j<n;j++)
		{
			for(int k=0;k<n;k++)
			index[j][k]='.';
		}	
			placeOk(index,0,n,result);
		
		return result;
    }

	private void placeOk(char[][] index, int x, int n, List<List<String>> result) {
		// TODO Auto-generated method stub
		if(x==n)
		{
			List<String> s = new ArrayList<>();
			for(int i=0;i<n;i++) 
			{
				String t= new String(index[i]);
				s.add(t);
			}
			result.add(s);
			return;
		}
		for(int i=0;i<n;i++)
		{
			if(valid(index,x,i,n))
			{
				index[x][i]='Q';
				placeOk(index,x+1,n,result);
				index[x][i]='.';
			}
		}
	}

	private boolean valid(char[][] index, int x, int y,int n) {
		// TODO Auto-generated method stub
		for(int i=0;i<n;i++)
			for(int j=0;j<n;j++)
			{
				if(index[i][j]=='Q' && (x==i||y==j||Math.abs(i-x)==Math.abs(j-y)))			
					return false;
			}
		return true;
	}
另一种解法就是,初始化的时候用Boolean的数组,用FALSE表示未放置,TRUE表示放置了Q:

public List<List<String>> solveNQueens(int n) {
		List<List<String>> result = new ArrayList<List<String>>();
		boolean[][] index = new boolean[n][n];
		for(int j=0;j<n;j++)
		{
			for(int k=0;k<n;k++)
			index[j][k]=false;
		}
		for(int i=0;i<n;i++)
		{
			placeOk(index,0,i,n,result);
			index[0][i]=false;
		}
		
		return result;
    }

private void placeOk(boolean[][] index, int row, int colum,int n, List<List<String>> result) {
		// TODO Auto-generated method stub
		if(valid(index,row,colum))
		{
			index[row][colum]=true;
			if(row==n-1)
			{
				//添加list;
				List<String> t = new ArrayList<String>();
				
				for(int i=0;i<n;i++)
				{
					String temp = "";
					for(int j=0;j<n;j++)
					{
						
						if(index[i][j]==true)
							temp+="Q";
						else
							temp+=".";
					}
					t.add(temp);
				}
				result.add(t);
				return;
			}
			else
			{
				index[row][colum]=true;
				for(int i=0;i<n;i++)
				{
					placeOk(index,row+1,i,n,result);
					index[row+1][i]=false;
					
				}	
		  }
		}
			return;
	}

	private boolean valid(boolean[][] index, int row, int colum) {
		// TODO Auto-generated method stub
		for(int i=0;i<index.length;i++)
			for(int j=0;j<index.length;j++)
			{
				if(index[i][j])
				{
					if(i==row)
						return false;
					else if(j==colum)
						return false;
					else if(Math.abs(i-row)==Math.abs(j-colum))
						return false;
				}
			}
		return true;
	}


第52题是返回有多少个解的数值,可以直接在51的基础上,返回resul.size(),或者定义一个全局变量count,在每次找到完整的存放方式之后,count++:

public class Solution {
	int count = 0;
	public int totalNQueens(int n) {
		List<List<String>> result = new ArrayList<List<String>>();
		char[][] index = new char[n][n];
		for(int j=0;j<n;j++)
		{
			for(int k=0;k<n;k++)
			index[j][k]='.';
		}	
			placeOk(index,0,n,result);
		return count;
    }

	private void placeOk(char[][] index, int x, int n, List<List<String>> result) {
		// TODO Auto-generated method stub
		if(x==n)
		{
			count++;
			return;
		}
		for(int i=0;i<n;i++)
		{
			if(valid(index,x,i,n))
			{
				index[x][i]='Q';
				placeOk(index,x+1,n,result);
				index[x][i]='.';
			}
		}
	}

	private boolean valid(char[][] index, int x, int y,int n) {
		// TODO Auto-generated method stub
		for(int i=0;i<n;i++)
			for(int j=0;j<n;j++)
			{
				if(index[i][j]=='Q' && (x==i||y==j||Math.abs(i-x)==Math.abs(j-y)))			
					return false;
			}
		return true;
	}
    
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值