渣渣

一个IT愤青的自我告白

LeetCode Minimum Path Sum

题目:

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

题意:

给定一个m行n列的二维数组,这二维数组中的值都是非负,找一条从左上角开始到右下角的所有格子和最小的路径。注意:你每次都只能要么向右走要么向下走一步。

题解:

这道题目是很典型的二维的动态规划的题目,看到此题,就应该想到动态规划。LZ此前在一篇博客中看到类似的题型,不过那个是计算最大值,也差不多,换汤不换药的东西。首先就是要找状态,我们注意到一点,到达一个格子的方式最多两种,从左边来(除了第一列)和从上边来(除了第一行),因此为了求出到达当前格子后最少能收集到的和,我们就要去考察那些能够达到当前这个格子的格子,所以状态转移方程也自然有了:

s[i][j] = a[i][j] + min(s[i-1][j],if i > 0;s[i][j-1],if j > 0) ,但是这里要注意的是针对s[0][0]的那一个格子,因为是从一行和一列开始的,所以当遇到s[0][0]的时候,我是直接将其赋为nums[0][0]的那个值,另外当遇到的是第一行和第一列的时候,因为没有s[i-1][j]和s[i][j-1],所以我在设置这些格子的时候采用Integer.MAX_VALUE,这个最大值来做,这样就可以比较最小的那个了。

public class NumArray 
{
	public static int minPathSum(int[][] nums)
	{
		int n = nums.length;
		int m = nums[0].length;
		//System.out.println(m);
		int[][] S = new int[n][m];
		for(int i = 0; i < n; i++)
		{
			for(int j = 0; j < m; j++)
			{
				int increment = nums[i][j];
				//System.out.print(increment + "  ");
				int left = 0,up = 0;
				if(i == 0 && j == 0)
					S[i][j] =increment;
				else
				{
					if(i > 0)
						up = S[i-1][j];
					else 
						up = Integer.MAX_VALUE;
					if(j > 0)
						left = S[i][j - 1];
					else 
						left = Integer.MAX_VALUE;
					int neighbor = 0;
					if(up <= left)
					   neighbor = up;
					else 
					   neighbor = left;
					S[i][j] = neighbor + increment;
				}
			}
		}
		int result = S[n-1][m-1];
		return result;
	}
	public static void main(String[] args)
	{
		int[][] nums = new int[][]{{1,2},{1,1}};
		System.out.println(minPathSum(nums));
	}
}



阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/sun_wangdong/article/details/49902025
文章标签: leetcode
个人分类: LeetCode刷题
上一篇LeetCode Longest Increasing Subsequence
下一篇LeetCode Unique Paths
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭