数组最大连续子序列和

给定一个包含正负数的数组,求最大连续子序列和。暴力法时间复杂度为O(n^3),但最佳解法是使用动态规划,只需遍历一次数组,通过thisSum和maxSum变量更新最大子序列和,若thisSum为负则重置为0,否则与maxSum比较并更新。
摘要由CSDN通过智能技术生成

题目:给定一个数组,其中元素可正可负,求其中最大连续子序列的和。

这题是一道非常经典的面试题,会经常出现在各种面试中,具体有好几种不同时间复杂度的解法,那么最好的方法是用动态规划方法来求解。

第一种:时间复杂度为O(n^3)

暴力法求解。三层循环,从起点和终点开始,第一层循环确定起点,第二层循环确定终点,第三层循环在起点和终点之间遍历。

public static int maxSubArray(int[] nums)
    {
        int thisSum,maxSum = Integer.MIN_VALUE,i,j,k;
        int length = nums.length;
        for(i = 0; i < length; i++)
        {
            for(j = i; j < length; j++)
            {
                thisSum = 0;
                for(k = i; k <= j; k++)
                {
                    thisSum += nums[k];
                }
                if(thisSum > maxSum)
                    maxSum = thisSum;
            }
        }
        return maxSum;
    }

这是最糟糕的做法,时间复杂度最高,不好,直接舍弃。

 

第二种做法

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值