论文名称:Path Problems in Temporal Graphs
论文研究背景
现有的路径问题基本都是在静态图上来进行研究的,然而经典最短路径的概念在时间图中是不充分的,甚至是有缺陷的,因为时间信息决定了沿着任何路径的活动的顺序。那么能否提出有效的算法来计算时序图上的最短路径问题了,本文就主要给出了两种方法,并对其进行实验验证。
论文内容
在本文中在时间图中定义了四种类型的路径,统称为最小时间路径,因为它们给出了不同度量的最小值:(1)最早到达路径(即从源x到目标y给出最早到达时间的路径);(2)最晚出发路径(即从x出发的最晚出发时间,以便在给定时间到达y的路径);(3)最快路径(即从x到y所用时间最短的路径);和(4)最短路径(即从x到y的最短路径,从边的总遍历时间来看)。
然后使用了两种方法来求时序图的最小时间路径:单遍历算法和图转换方法,这也是本篇论文的核心。
ONE-PASS ALGORITHMS :
在介绍单遍算法之前,必须要对它进行边流表示, 就是时序图G中所有边的序列的集合,按照开始时间的顺序进行排列。例如,{(v3, v2, 1,1), (v1, v2, 2,5), (v2, v4, 4,1)}就是边流表示,是严格按照时间升序的。
1.Earliest-Arrival Paths
它就是使用一个数组t[v]来保持从x到流中已经看到的每个顶