时序图论文阅读1

论文名称:Path Problems in Temporal Graphs

论文研究背景

        现有的路径问题基本都是在静态图上来进行研究的,然而经典最短路径的概念在时间图中是不充分的,甚至是有缺陷的,因为时间信息决定了沿着任何路径的活动的顺序。那么能否提出有效的算法来计算时序图上的最短路径问题了,本文就主要给出了两种方法,并对其进行实验验证。

论文内容

        在本文中在时间图中定义了四种类型的路径,统称为最小时间路径,因为它们给出了不同度量的最小值:(1)最早到达路径(即从源x到目标y给出最早到达时间的路径);(2)最晚出发路径(即从x出发的最晚出发时间,以便在给定时间到达y的路径);(3)最快路径(即从x到y所用时间最短的路径);和(4)最短路径(即从x到y的最短路径,从边的总遍历时间来看)。

        然后使用了两种方法来求时序图的最小时间路径:单遍历算法和图转换方法,这也是本篇论文的核心。

 ONE-PASS ALGORITHMS :

       在介绍单遍算法之前,必须要对它进行边流表示, 就是时序图G中所有边的序列的集合,按照开始时间的顺序进行排列。例如,{(v3, v2, 1,1), (v1, v2, 2,5), (v2, v4, 4,1)}就是边流表示,是严格按照时间升序的。

1.Earliest-Arrival Paths

它就是使用一个数组t[v]来保持从x到流中已经看到的每个顶

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值