时序图综述

论文名称:大规模时序图数据的查询处理与挖掘技术综述

论文研究背景

       论文的研究背景是时序图在作为一种带有时间维度的图结构,在图数据的查询处理与挖掘工作中扮演着越来越重要的角色。时序图的结构会随时间序列发生改变,即时序图的边由时间激活.而且由 于时序图上每条边都有记录时间的标签,所以时序图包含的信息量相较于静态图也更为大,这使得现有的数据查询处理方法不能很好地应用于时序图中。因此如何解决时序图上的数据查询处理与挖掘问题得到研究者们的关注。

论文内容

       对现有的时序图上的查询处理与挖掘方法进行了综述,详细介绍了时序图的应用背景和基本定义,梳理了现有的时序图模型,并从图查询处理方法、图挖掘方法和时序图管理系统3个方面对时序图上现有的工作进行了详细的介绍和分析。最后对时序图上可能的研究方向进行了展望, 为相关研究提供参考。

1.时序图的数据定义与模型

1.1时序图定义

        那时序图到底是什么了?研究者们将其中按照时间变化的动态网络建模成时序图,如将时间作为边上的权值,通过时间序列来表示顶点和边之间的连接和交互关系。

图1(a)表示静态图;图1(b)表示存在于1~10时间阈值内的时序图;图1(c)表示图1(b)中顶点和边对应的时间序列.只有在时刻6时A和C是通过

### 关于时序3D目标检测的综述与文献推荐 对于时序3D目标检测的研究,近年来随着自动驾驶技术的发展而受到广泛关注。这类研究不仅涉及静态场景下的物体识别,还扩展到了动态环境中的连续帧处理和时间维度上的特征融合。 #### 自动驾驶领域内的时序3D目标检测 在自动驾驶背景下,时序3D目标检测通常依赖多模态传感器数据(如LiDAR点云、RGB相机图像),并结合时间序列信息来提升预测精度。一篇全面覆盖该主题的文章提供了对基于深度学习的方法以及传统几何方法的深入探讨[^1]。此外,这篇文章也提及时序建模的重要性及其如何影响实时系统的性能表现[^2]。 #### 方法分类与发展趋势 针对不同类型的输入源,当前主流的技术路线可以分为几大类:一是利用单帧或多帧激光雷达扫描结果;二是通过视频流提取空间-时间特性;三是混合多种感知手段实现更鲁棒的结果估计。通过对这些方案进行全面评测,能够帮助理解过去几年间学术界关注的重点变化,并对未来可能探索的方向给出建议[^3]。 #### 推荐阅读材料 以下是几个值得查阅的相关资源列表: 1. **《A Comprehensive Review》** - 这份文档详细介绍了包括但不限于时序在内的各种三维物体探测机制。 2. 特定章节聚焦讨论了时间轴上对象状态演变规律捕捉的有效策略和技术挑战。 3. 参考其他同类总结性质的作品也可以获得更多视角的支持,比如那些对比分析早期基础算法同现代先进模型之间差异之处的内容。 ```python # 示例代码展示了一个简单的时序数据处理框架 import numpy as np def process_temporal_data(data_sequence): """ 处理一系列的时间步长数据 参数: data_sequence (list of ndarray): 输入的数据序列 返回: processed_output (ndarray): 融合后的输出向量 """ concatenated_features = np.concatenate([frame.flatten() for frame in data_sequence], axis=0) return concatenated_features.reshape(-1, 1) example_frames = [np.random.rand(10), np.random.rand(10)] output_vector = process_temporal_data(example_frames) print(output_vector.shape) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值