基于Spark自动扩展scikit-learn (spark-sklearn)

本文介绍了如何使用spark-sklearn在Spark上扩展scikit-learn,实现大规模模型参数调优。spark-sklearn允许数据科学家在Spark集群上分布式运行模型参数优化任务,无需修改代码即可在单机和集群间切换。文中以随机森林为例,展示了如何利用GridSearchCV进行参数搜索,并通过比较单机与Spark集群的效率,强调了在大数据集上使用Spark的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、基于Spark自动扩展scikit-learn(spark-sklearn)

1.1 导论

Spark MLlib 将传统的单机机器学习算法改造成分布式机器学习算法,比如在梯度下降算法中,单机做法是计算所有样本的梯度值,单机算法是以全体样本为计算单位;而分布式算法的逻辑是以每个样本为单位,在集群上分布式的计算每个样本的梯度值,然后再对每个样本的梯度进行聚合操作等。在Spark Mllib中分布式的计算单位可以是:一个样本数据、一个分区的样本数据,一个矩阵等等,分布式的计算单位根据算法的需求而不同,前提条件是每个单位的计算应该是可独立,不依赖于其它单位的计算结果,所以一般在分布式算法设计时,需要把每个单位计算时所需要的数据放在一个单位里,例如在ALS的分布式设计中,将U和V的数据进行重新分区,并建立新的数据集。

Spark Mllib实现了在大数据训练样本下的分布式计算,适应于工程化的实践项目中,如果当计算模型中需要涉及到各种模型参数的调优时,Spark Mllib就会显得有些不足,那我们能否设想下:在小样本训练集下,我在Spark上随机生成1千万个计算模型,把这1千万个计算模型分布式的运行在Spark集群上对训练集进行模型测试计算,是不是可以得到一个结果最优的模型,该模型对应的参数就是最优参数,然后我们根据最优化参数应用在工程化的实践中。

我们可以对Spark Mllib 进行扩展,把我们的带有参数的机器学习模型当作分布的计算单位,每个单位的元素包括:(带参数的模型,训练样本,测试样本),每个单位的计算过程就是将对训练样本训练带参数的模型,得到模型,然后计算测试样本的精度,在集群中对各个单位进行分布式的计算,最终取得最优结果的那个模型。

这就是我下面要介绍的:Auto-scaling scikit-learn with Spark。

1.2 spark-sklearn背景

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值