===============这是数算第一次编程作业=========
Description
定义歌德巴赫数为可以表示为两个质数之和的数。给定正整数N,找出第N个歌德巴赫数。约定1不是质数。
Input Description
一个正整数N,不超过10^7。
Output Description
第N个歌德巴赫数。
Input Sample
6
Output Sample
9
Hint
No Hint
===========================================
C++代码:
#include<iostream>
#include<cmath>
#include<cstring>//用memset(array,value,sizeof(array))函 数,初始化所有数组元素
#define Max 10000000
using namespace std;
bool prime[Max];
void Isprime()
{
memset(prime,true, sizeof(prime));//初始化所有数组元素为true
prime[0]=prime[1]=false;
for(int i=2; i<=sqrt(Max*1.0); i++)//依次筛去2,3,5...小于sqrt(Max)的倍数
{
if(prime[i])
{
for(int j=2*i; j<Max; j+=i)//分别筛去i(素数)的2倍、3倍......
{
prime[j] = false;
}
}
}
}
int main()
{
int n;
cin>>n;
Isprime();
int s=4;//first goldbuch num;
for(int i=1;i<=n;s++)
if(s%2==0||prime[s-2])//判断哥德巴赫数的方法:偶数一定可以表示为两个素数的和,若奇数(等于奇素
i++; //数+偶素数(2)),s-2一定是奇素数!
cout<<s-1;
return 0;
}
总结:
筛法是一个以空间换时间的例子。空间复杂度增加了,时间复杂度降低了。
筛法找素数的算法可以继续优化;
判断哥德巴赫数的方法;
失误:使用memset()时没有搞清楚函数所属源文件,导致运行错误。
PS:
关于优化,在筛法执行过程中会筛去素数的倍数,这样的话有些素数的公倍数会被重复筛去,