【数据与算法】筛法求素数与哥德巴赫数

===============这是数算第一次编程作业=========

Description

定义歌德巴赫数为可以表示为两个质数之和的数。给定正整数N,找出第N个歌德巴赫数。约定1不是质数。
Input Description

一个正整数N,不超过10^7。
Output Description

第N个歌德巴赫数。
Input Sample

6
Output Sample

9
Hint

No Hint

===========================================
C++代码:

#include<iostream>
#include<cmath>
#include<cstring>//用memset(array,value,sizeof(array))函 数,初始化所有数组元素
#define Max 10000000
using namespace std;    
bool prime[Max];
void Isprime()
   {
    memset(prime,true, sizeof(prime));//初始化所有数组元素为true
    prime[0]=prime[1]=false;
    for(int i=2; i<=sqrt(Max*1.0); i++)//依次筛去2,3,5...小于sqrt(Max)的倍数
          {  
        if(prime[i])
                  {  
                    for(int j=2*i; j<Max; j+=i)//分别筛去i(素数)的2倍、3倍......
                       {  
                        prime[j] = false;  
                       }  
                  }  
           }  
  }
int main()
{
    int n;
    cin>>n;
    Isprime();
    int s=4;//first goldbuch num;
    for(int i=1;i<=n;s++)
        if(s%2==0||prime[s-2])//判断哥德巴赫数的方法:偶数一定可以表示为两个素数的和,若奇数(等于奇素
                         i++;         //数+偶素数(2)),s-2一定是奇素数!
    cout<<s-1;
    return 0;
}

总结:
筛法是一个以空间换时间的例子。空间复杂度增加了,时间复杂度降低了。
筛法找素数的算法可以继续优化;
判断哥德巴赫数的方法;
失误:使用memset()时没有搞清楚函数所属源文件,导致运行错误。

PS:
关于优化,在筛法执行过程中会筛去素数的倍数,这样的话有些素数的公倍数会被重复筛去,

所以可以优化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值