哥德巴赫猜想于1742年由德国数学家哥德巴赫提出,内容是:任何大于2的偶数,都可以写成两个质数之和的形式(简称"1+1")。它是关于质数(也称素数)的问题,它和自然数集合中素数的存在性,以及孪生素数的存在性有共同的特点,于是,它们三个问题可以一同论证。
我在《诸多素数问题与容斥原理》一文中已经给出了完全论证(见《初等数学研究在中国》第三辑,2021年5月),主要结论是:
①A(n)≥[nφ(m)÷m]≥[√n],
其中,φ(m)=(2-1)(3-1)…(Pt-1)为欧拉函数,m=2x3x…XPt,Pt≤[√n],为素数,[√n]表示小数√n的整数部分,A(n)表n以内的正整数中素数个数,包含1的个数,但不包含2,3,…,Pt的t个素数的个数。
②B(n)≥[nφ2(m)÷m]≥[√n÷2],
其中,φ2(m)=(2-1)(3-2)…(Pt-2)为欧拉函数在数域B:{(-1,1),(0,2),(1,3),…,(m-2,m)}中的应用,m=2x3x…XPt,Pt≤[√n],为素数,B(n)表n以内的正整数中孪生素数的个数,包含(-1,1)的个数,但不包含2,3,…,Pt的t个素数参与的孪生素数的个数。
③C(n)≥[nφ3(m)÷m]≥[√2n÷4],
其中,φ3(m)=(2-1)(3-r2)…(Pt-rt)为欧拉函数在数域C:{(1,2n-1),(2,2n-2)ÿ