笔记本键盘如何摇身一变机械键盘?

 笔记本键盘摇身一变机械键盘

     

     噗,真是不好意思,分享的链接被我不小心删了,然后今天才发现。现在又重新上传了一遍,希望对大家有用。

  今天小编又带来一波干货哦。绝对是正宗的干货。对于那些用笔记本打游戏又愁着没有机械键盘玩着舒服的男同学啊,这个干货你一定要知道,因为键盘直接决定了你们的游戏段位是不是。

 

  

链接:https://pan.baidu.com/s/1eSHpWmnxI1_FPjha4bKZBg 密码:di9l

下面我就给大家分享下这个软件该怎么用:

   1、先下载这个软件的压缩包,上面有提取密码的,然后保存到网盘即可。

   2、在电脑上打开这个压缩包,使用解压工具进行解压。由于这是一款绿色版免安装的软件,打开后直接双击如下标志。直接上图了。

 

 

3、此时会弹出如下图标,这个时候你可以再双击下这个页面,之后它就会消失,然后你就可以轻轻的感受下现在的笔记本键盘啦。

怎么样?是不是很有feel啊!超级炫酷的有木有?

 

 

4、此外这款软件还可以设置不同的键盘声音,这个时候需要按QAZ123就会弹出如下界面(PS:我的电脑是win10,在按QAZ123指令时得把输入法切换到中文下才能弹出界面,否则无效)

 

 

总结

这些分享都是我自己生活中遇到的问题,今天一个偶然的机会得到了这个工具,小编感觉还是挺棒的,感谢那位分享这款软件给我的小伙伴,同时也希望这款分享工具可以受惠于你。如有任何问题,请留言指正!   

喜欢的就动个爪点个赞吧!

 

更多精彩内容请关注公众号:干货分享录

 

内容概要:本文介绍了一种利用遗传算法优化BP神经网络进行回归预测的方法,并提供了完整的MATLAB程序代码。主要内容包括数据预处理、遗传算法与BP神经网络的结合、适应度函数的设计以及最终的预测结果展示。文中详细解释了如何将Excel格式的数据导入MATLAB并进行归一化处理,如何定义适应度函数来优化BP神经网络的参数(如激活函数和学习率),并通过遗传算法找到最优解。实验结果显示,在某工业数据集上,经过遗传算法优化后的BP神经网络预测精度显著提高,从原来的0.82提升到了0.91。此外,还提到了一些实用技巧,比如调整遗传代数、修激活函数等方法进一步进模型性能。 适合人群:对机器学习有一定了解的研究人员和技术爱好者,特别是那些希望深入了解遗传算法与BP神经网络结合应用的人士。 使用场景及目标:适用于需要快速构建高效回归预测模型的场景,尤其是当传统BP神经网络无法达到预期效果时。通过本篇文章的学习,读者能够掌握一种有效的优化手段,从而提高模型的泛化能力和预测准确性。 其他说明:代码可以直接应用于新的数据集,只需确保数据格式符合要求(Excel格式)。对于想要深入探索或进现有模型的人来说,还可以尝试更换不同的激活函数或其他调节方式来获得更好的表现。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sustyle

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值