Codeforces 1338E JYPnation (图论)

UPD 2020.04.30:本题解被发现存在严重错误,已更正。

题目链接

https://codeforces.com/contest/1338/problem/E

题解

这题太神了……这才是 div1E 啊,比什么 nim 积意义下的离散对数之类的高明到不知道哪里去了
这篇题解主要复述一下官方题解并补充一下官方题解上省略的证明。所有证明都是蒟蒻口胡的,有问题敬请指出。

下面把题目保证不存在的那个 4 4 4 个点的子图称作 H H H,用四元组表示 H H H 时,默认最后一个点入度为 3 3 3;整张图的点集记作 V V V. 设一个点 u u u 的入点集合为 i n ( u ) in(u) in(u).

首先对这个图进行拓扑排序,每次删掉入度为 0 0 0 的点,则该点对答案的贡献是 ( 614 n + 1 ) (614n+1) (614n+1) 乘以剩下的点数。不妨假设剩下的图非空,下面的内容都在剩下的图上进行。我们会发现:
引理 0 不存在入度为 0 0 0 的点时,整张图是强连通的。
证明 对其缩点后,大小超过 1 1 1 的 SCC 必定有三元环,而入度为 0 0 0 的 SCC 必定大小超过 1 1 1. 因此如果 SCC 个数超过 1 1 1,则取入度为 0 0 0 的 SCC 的一个三元环和其余的 SCC 中的一个点,会构成 H H H.
引理 1 ∀ u , i n ( u ) ∪ { u } \forall u, in(u)\cup \{u\} u,in(u){u} 无环。
证明 反证,如果有环的话环上的点构成一个大小至少为 3 3 3 的 SCC,必定存在三元环,和 u u u 点构成 H H H.
引理 2 任取一个点 X X X,我们可以把整张图划分为两部分 P = i n ( X ) ∪ { X } , Q = V ∖ P P=in(X)\cup \{X\},Q=V\setminus P P=in(X){X},Q=VP,则存在 u ∈ Q , v ∈ P u\in Q,v\in P uQ,vP 满足 ( u , v ) (u,v) (u,v) 有边。
证明 由于整张图强连通,显然。
(题解在这里的做法是取度数最大的点作为 X X X,实际上是需要的,理由将在下面给出。)
任取一个满足引理 2 条件的点 v v v. 设 R = i n ( v ) ∩ Q , S = Q ∖ R R=in(v)\cap Q,S=Q\setminus R R=in(v)Q,S=QR.
引理 3 ∀ y ∈ S , z ∈ R \forall y\in S,z\in R yS,zR ( y , z ) (y,z) (y,z) 有边。
证明 反证,设 ( z , y ) (z,y) (z,y) 有边,则 ( v , X , z , y ) (v,X,z,y) (v,X,z,y) 四个点构成 H H H.
引理 4 S S S 无环, R R R 无环。
证明 根据引理 1 得 R R R 无环;若 S S S 有环则和 R R R 中任何一点构成 H H H.
引理 5 P P P 无环, Q Q Q 无环。
证明 根据引理 1 得 P P P 无环,由 S , R S,R S,R 分别无环且 S , R S,R S,R 之间连的边都由 S S S 指向 R R R 得到 Q = S ∪ R Q=S\cup R Q=SR 无环。
到这里,我们就知道我们把这张图划分成了两个部分,且两部分分别无环。

对两部分分别进行拓扑排序,并给他们标号为 P i , Q i P_i,Q_i Pi,Qi(现在把集合看成序列),不妨设 i < j i\lt j i<j 当且仅当存在边 ( P i , P j ) (P_i,P_j) (Pi,Pj) Q Q Q 同理。
i n P ( u ) = i n ( u ) ∩ P , i n Q ( u ) = i n ( u ) ∩ Q inP(u)=in(u)\cap P,inQ(u)=in(u)\cap Q inP(u)=in(u)P,inQ(u)=in(u)Q.
引理 6a ∀ i \forall i i i n Q ( P i ) inQ(P_i) inQ(Pi) Q Q Q 的一段后缀;
证明 反证,若存在 j < k j\lt k j<k 满足 ( P i , Q k ) , ( Q j , P i ) (P_i,Q_k),(Q_j,P_i) (Pi,Qk),(Qj,Pi). 注意到 P P P 的最后一个元素是 X X X,且 X X X Q Q Q 中每个点都连了边。于是 ( P i , Q j , X , Q k ) (P_i,Q_j,X,Q_k) (Pi,Qj,X,Qk) 构成 H H H.
那么不难发现, ∀ i , j \forall i,j i,j, 若 ∣ i n Q ( P i ) ∣ = ∣ i n Q ( P j ) ∣ |inQ(P_i)|=|inQ(P_j)| inQ(Pi)=inQ(Pj) i n Q ( P i ) = i n Q ( P j ) inQ(P_i)=inQ(P_j) inQ(Pi)=inQ(Pj),否则大的包含小的。
引理 6b ∀ i \forall i i i n P ( Q i ) inP(Q_i) inP(Qi) P P P 的一段后缀。
证明 l i l_i li 为最小的 j j j 满足 ( Q j , P i ) (Q_j,P_i) (Qj,Pi) 有边(若不存在视为 + ∞ +\infty +),可以证明 l i ≤ l i + 1 l_i\le l_{i+1} lili+1.
反证:若 l i > l i + 1 l_i\gt l_{i+1} li>li+1 且都不为 + ∞ +\infty +,则 ( P i , Q l i + 1 , Q l i , P i + 1 ) (P_i,Q_{l_{i+1}},Q_{l_i},P_{i+1}) (Pi,Qli+1,Qli,Pi+1) 四个点构成 H H H.
l i = + ∞ l_i=+\infty li=+,则由于入度不为 0 0 0 P 1 P_1 P1 一定满足 l 1 ≠ + ∞ l_1\ne +\infty l1=+,即 ( Q ∣ Q ∣ , P 1 ) (Q_{|Q|},P_1) (QQ,P1). 而因为 ( P i , Q ∣ Q ∣ ) , ( Q ∣ Q ∣ , P i + 1 ) (P_i,Q_{|Q|}),(Q_{|Q|},P_{i+1}) (Pi,QQ),(QQ,Pi+1) ( P 1 , P i , Q ∣ Q ∣ , P i + 1 ) (P_1,P_i,Q_{|Q|},P_{i+1}) (P1,Pi,QQ,Pi+1) 构成 H H H.

还有一个问题: d i s ( Q j , P i ) dis(Q_j,P_i) dis(Qj,Pi) ( P i , Q j ) (P_i,Q_j) (Pi,Qj) 有边时的距离没有解决。由于整张图中没有入度大于 X X X 的点,故 Q Q Q 中每个点会往 P P P 中连至少一条边。而因为 Q Q Q P P P 连的点是 P P P 的一个前缀,因此一定会连到 P 1 P_1 P1,故 d i s ( Q j , P i ) = 2 dis(Q_j,P_i)=2 dis(Qj,Pi)=2.

最后总结一下结论:
d i s ( P i , P j ) = 1 ⇔ i < j dis(P_i,P_j)=1\Leftrightarrow i\lt j dis(Pi,Pj)=1i<j
d i s ( P i , P j ) = 2 ⇔ j < i ∧ ∣ i n Q ( P i ) ∣ ≠ ∣ i n Q ( P j ) ∣ dis(P_i,P_j)=2\Leftrightarrow j\lt i\land |inQ(P_i)|\ne |inQ(P_j)| dis(Pi,Pj)=2j<iinQ(Pi)=inQ(Pj)
d i s ( P i , P j ) = 3 ⇔ j < i ∧ ∣ i n Q ( P i ) ∣ = ∣ i n Q ( P j ) ∣ dis(P_i,P_j)=3\Leftrightarrow j\lt i\land |inQ(P_i)|=|inQ(P_j)| dis(Pi,Pj)=3j<iinQ(Pi)=inQ(Pj)
d i s ( Q i , Q j ) = 1 ⇔ i < j dis(Q_i,Q_j)=1\Leftrightarrow i\lt j dis(Qi,Qj)=1i<j
d i s ( Q i , Q j ) = 2 ⇔ j < i ∧ ∣ i n P ( Q i ) ∣ ≠ ∣ i n P ( Q j ) ∣ dis(Q_i,Q_j)=2\Leftrightarrow j\lt i\land |inP(Q_i)|\ne |inP(Q_j)| dis(Qi,Qj)=2j<iinP(Qi)=inP(Qj)
d i s ( Q i , Q j ) = 3 ⇔ j < i ∧ ∣ i n P ( Q i ) ∣ = ∣ i n P ( Q j ) ∣ dis(Q_i,Q_j)=3\Leftrightarrow j\lt i\land |inP(Q_i)|=|inP(Q_j)| dis(Qi,Qj)=3j<iinP(Qi)=inP(Qj)
d i s ( P i , Q j ) + d i s ( Q j , P i ) = 3 dis(P_i,Q_j)+dis(Q_j,P_i)=3 dis(Pi,Qj)+dis(Qj,Pi)=3

时间复杂度 O ( n 2 ) O(n^2) O(n2).

代码

#include<bits/stdc++.h>
#define llong long long
#define mkpr make_pair
#define x first
#define y second
#define iter iterator
#define riter reversed_iterator
#define y1 Lorem_ipsum_dolor
using namespace std;

inline int read()
{
	int x = 0,f = 1; char ch = getchar();
	for(;!isdigit(ch);ch=getchar()) {if(ch=='-') f = -1;}
	for(; isdigit(ch);ch=getchar()) {x = x*10+ch-48;}
	return x*f;
}

const int mxN = 8000;
int ind[mxN+3];
vector<int> s1,s2;
char a[mxN+3][mxN+3];
queue<int> que;
int n; llong w,ans;

char decode(char x) {return x>=65?x-55:x-48;}

bool cmp(int x,int y) {return a[x][y];}

int main()
{
	scanf("%d",&n); w = 614ll*n;
	for(int i=1; i<=n; i++)
	{
		char ch = getchar();
		for(int j=4; j<=n; j+=4)
		{
			ch = decode(getchar());
			a[i][j-3] = (ch&8)>>3,a[i][j-2] = (ch&4)>>2,a[i][j-1] = (ch&2)>>1,a[i][j] = ch&1;
		}
	}
	for(int i=1; i<=n; i++) for(int j=i+1; j<=n; j++)
	{
		if(a[i][j]) {ind[j]++;} else {ind[i]++;}
	}
	for(int i=1; i<=n; i++) if(ind[i]==0) {que.push(i);}
	int cur = n;
	while(!que.empty())
	{
		int u = que.front(); que.pop();
		cur--; ans += (w+1ll)*cur;
		for(int v=1; v<=n; v++) if(a[u][v]&&v!=u)
		{
			ind[v]--;
			if(ind[v]==0) {que.push(v);}
		}
	}
	if(cur==0) {printf("%I64d\n",ans); return 0;}
	int u = 0; for(int i=1; i<=n; i++) if(u==0||ind[i]>ind[u]) {u = i;}
	for(int i=1; i<=n; i++) if(ind[i]) {if(u==i||a[i][u]) {s1.push_back(i);} else {s2.push_back(i);}}
	sort(s1.begin(),s1.end(),cmp); sort(s2.begin(),s2.end(),cmp);
	ans += 3ll*s1.size()*s2.size()+s1.size()*(s1.size()-1ll)/2ll+s2.size()*(s2.size()-1ll)/2ll;
	for(int i=0; i<s1.size(); i++) {ind[s1[i]] -= i;}
	for(int i=0; i<s1.size(); i++) for(int j=0; j<i; j++)
	{
		ans += ind[s1[i]]==ind[s1[j]]?3ll:2ll;
	}
	for(int i=0; i<s2.size(); i++) {ind[s2[i]] -= i;}
	for(int i=0; i<s2.size(); i++) for(int j=0; j<i; j++)
	{
		ans += ind[s2[i]]==ind[s2[j]]?3ll:2ll;
	}
	printf("%I64d\n",ans);
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值