学习笔记
文章平均质量分 69
suncongbo
蒟蒻OIer | 已搬至cnblogs: www.cnblogs.com/suncongbo,CSDN 的文章自动搬运 cnblogs 发表,但文章更新时不会自动同步,因此建议前往 cnblogs 访问!
展开
-
【学习笔记】与调和级数相关的时间复杂度
声明:博主写这个博客的理由只是为了缓解心情,大部分的东西都是我手推的,没有验证过,如果有问题敬请指出。Noip2018day1完挂,非常难受,过来写个博客颓一下,缓解心情1. 调和级数调和级数Hn=∑i=1nni=O(nlogn)H_n=\sum^{n}_{i=1} \frac{n}{i}=O(n\log n)Hn=∑i=1nin=O(nlogn)这个怎么证……抱歉蒟蒻真不会……...原创 2018-11-10 16:13:39 · 2196 阅读 · 0 评论 -
【学习笔记】关于最大公约数(gcd)的定理
结论1gcd(xa−1,xb−1)=xgcd(a,b)−1\gcd(x^a-1,x^b-1)=x^{\gcd(a,b)}-1gcd(xa−1,xb−1)=xgcd(a,b)−1证明:采用数学归纳法。令a=kb+pa=kb+pa=kb+p, 则有gcd(xa−1,xb−1)=gcd(xkb+p−1,xb−1)=gcd(xp(xkb−1)+xp−1,xb−1)=gcd(xp−1,x...原创 2018-10-04 00:21:28 · 1950 阅读 · 0 评论 -
【学习笔记】一些常用的数学公式
e=∑n=01n!e=\sum_{n=0}\frac{1}{n!}e=∑n=0n!1ex=∑n=0xnn!e^x=\sum_{n=0}\frac{x^n}{n!}ex=∑n=0n!xnex=∑n=0xnn!e^x=\sum_{n=0}\frac{x^n}{n!}ex=∑n=0n!xnln(1−x)=∑n=1xnn\ln(1-x)=\sum_{n=1}\frac{x^n}{n}l...原创 2018-12-24 11:28:00 · 1201 阅读 · 0 评论