BZOJ 2754 [SCOI2012]喵星球上的点名 (AC自动机、树状数组)

吐槽: 为啥很多人用AC自动机暴力跳都过了?复杂度真的对么?

做法一: AC自动机+树状数组

姓名的问题,中间加个特殊字符连起来即可。

肯定是对点名串建AC自动机(map存儿子),然后第一问就相当于问每个姓名串(以下称作“关键路径”)经过了多少个点名串(以下称做“关键点”)在fail树中的子树中的至少一点,第二问就相当于问你每条关键路径被多少个关键点经过了在fail树的子树中至少一个点

所以对于每个关键路径在AC自动机上跑,每跑到一个点把它到根的路径上打上标记(注意每个姓名串要有不同的标记),最后统计标记个数即可。

然后如果暴力跳去更新可过,我不知道复杂度对不对,感觉是错的。(也许是\(O(n\sqrt n)\)?)

脑子里第一思路是用bitset, 可以在暴力的复杂度基础上除以\(\omega\), 没试过

第二思路是线段树/启发式合并,没仔细想

最后看了一波题解: 我们的目标就是让同一关键路径上的点只被加一次,这样就可以变或为加,不需要状压bitset了。

然后一种好办法是像虚树那样按DFS序排序,相邻两个求出LCA,在LCA到根的路径上-1. 差分树状数组维护即可。

时间复杂度\(O(n\log n)\)

易错点: 注意AC自动机不补成Trie图,绝对不能再fail[son[u][i]]=son[fail[u]][i]了!(一晚上的惨痛教训……) 即使是写板子也要经过脑子!!!!!!!

听说也可以SA+主席树?并不会233

代码
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<vector>
#include<map>
#include<algorithm>
using namespace std;

const int N = 5e4;
const int S = 5e4+1;
const int SIZ = 1e5;
const int LGSIZ = 16;
struct Edge
{
    int v,nxt;
} e[(SIZ<<1)+3];
int fe[SIZ+3];
vector<int> a[N+3];
vector<int> b[N+3];
vector<int> ky;
map<int,int> son[SIZ+3];
int fail[SIZ+3];
int id[N+3];
int tr[SIZ+3];
int que[SIZ+3];
int ansa[N+3],ansb[N+3];
int dfn[SIZ+3];
int fa[SIZ+3][LGSIZ+3];
int sz[SIZ+3];
int dep[SIZ+3];
int num[SIZ+3];
int n,m,siz,en,cnt;

void addval(int lrb,int val)
{
    while(lrb<=cnt)
    {
        tr[lrb] += val;
        lrb += (lrb&(-lrb));
    }
}

int querysum(int rb)
{
    int ret = 0;
    while(rb>0)
    {
        ret += tr[rb];
        rb -= (rb&(-rb));
    }
    return ret;
}

int insertstr(vector<int> str)
{
    int u = 0;
    for(int i=0; i<str.size(); i++)
    {
        if(son[u].count(str[i])==0) {siz++; son[u][str[i]] = siz;}
        u = son[u][str[i]];
    }
    num[u]++;
    return u;
}

void buildACA()
{
    int head = 1,tail = 0;
    for(map<int,int>::iterator iter=son[0].begin(); iter!=son[0].end(); iter++)
    {
        int u = (iter->second);
        tail++; que[tail] = u; fail[u] = 0;
    }
    while(head<=tail)
    {
        int u = que[head]; head++;
        for(map<int,int>::iterator iter=son[u].begin(); iter!=son[u].end(); iter++)
        {
            int v = (iter->second),i = (iter->first);
            if(v)
            {
                int uu = fail[u];
                while(uu && !son[uu].count(i)) {uu = fail[uu];}
                fail[v] = son[uu][i];
                tail++; que[tail] = v;
            }
        }
    }
}

void addedge(int u,int v)
{
    en++; e[en].v = v;
    e[en].nxt = fe[u]; fe[u] = en;
}

void dfs(int u)
{
    cnt++; dfn[u] = cnt;
    sz[u] = 1;
    for(int i=1; i<=LGSIZ; i++) fa[u][i] = fa[fa[u][i-1]][i-1];
    for(int i=fe[u]; i; i=e[i].nxt)
    {
        if(e[i].v==fa[u][0]) continue;
        fa[e[i].v][0] = u;
        dep[e[i].v] = dep[u]+1;
        num[e[i].v] += num[u];
        dfs(e[i].v);
        sz[u] += sz[e[i].v];
    }
}

int LCA(int u,int v)
{
    if(dep[u]<dep[v]) swap(u,v);
    int dif = dep[u]-dep[v];
    for(int i=LGSIZ; i>=0; i--) {if(dif&(1<<i)) {u = fa[u][i];}}
    if(u==v) return u;
    for(int i=LGSIZ; i>=0; i--) {if(fa[u][i]!=fa[v][i]) {u = fa[u][i]; v = fa[v][i];}}
    return fa[u][0];
}

bool cmp_dfn(int x,int y) {return dfn[x]<dfn[y];}

int main()
{
    scanf("%d%d",&n,&m); siz = 0;
    for(int i=1; i<=n; i++)
    {
        int len; scanf("%d",&len); for(int j=1; j<=len; j++) {int x; scanf("%d",&x); a[i].push_back(x);}
        a[i].push_back(S);
        scanf("%d",&len); for(int j=1; j<=len; j++) {int x; scanf("%d",&x); a[i].push_back(x);}
    }
    for(int i=1; i<=m; i++)
    {
        int len; scanf("%d",&len); for(int j=1; j<=len; j++) {int x; scanf("%d",&x); b[i].push_back(x);}
        id[i] = insertstr(b[i]);
    }
    buildACA();
    for(int i=1; i<=siz; i++)
    {
        addedge(fail[i],i); addedge(i,fail[i]);
    }
    cnt = 0; dfs(0);
    for(int i=1; i<=n; i++)
    {
        int u = 0; ky.push_back(u);
        for(int j=0; j<a[i].size(); j++)
        {
            while(u && !son[u][a[i][j]]) {u = fail[u];}
            u = son[u][a[i][j]]; if(u) ky.push_back(u);
        }
        sort(ky.begin(),ky.end(),cmp_dfn);
        for(int j=0; j<ky.size(); j++)
        {
            if(j>0)
            {
                int lca = LCA(ky[j],ky[j-1]);
                addval(dfn[lca],-1); ansa[i] -= num[lca];
            }
            addval(dfn[ky[j]],1); ansa[i] += num[ky[j]];
        }
        ky.clear();
    }
    for(int i=1; i<=m; i++)
    {
        ansb[i] = querysum(dfn[id[i]]+sz[id[i]]-1)-querysum(dfn[id[i]]-1);
    }
    for(int i=1; i<=m; i++) printf("%d\n",ansb[i]);
    for(int i=1; i<=n; i++) printf("%d ",ansa[i]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值