图像tamura特征提取<一>

本文关注于内容为基础的图像检索(CBIR)中的特征提取,特别是Tamura特征。作者分享了一些关键的C++类,如BaseFeature和VectorFeature,它们在CBIR系统中用于将提取的特征转化为向量形式进行后续处理。文章着重介绍这些基础结构在图像特征表示中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自己对CBIR比较感兴趣,cbir中很重要的一个环节就是特征提取。这里分享一下不错的一些代码。

这里首先是几个用的比较多的与特征相关的C++类。

1、BaseFeature

最根本的一个类,今后用到的所有特征类都派生(或间接派生)于它。

class BaseFeature {
protected:
  FeatureType type_;

public:
  
  BaseFeature() :type_(FT_BASE) {}

  virtual ~BaseFeature() {}
  virtual BaseFeature *clone() const=0;
  const FeatureType& type() const { return type_;}
  FeatureType& type() { return type_;}
  virtual bool load(const ::std::string &filename);
  virtual void save(const ::std::string &filename);  
  virtual bool read(::std:: istream & is)=0;  
  virtual bool readBinary(::std:: istream &){ERR << "Not supported for this featuretype." <<::std::endl; return true;}  // CHANGE
  virtual void write(::std::ostream & os)=0;
  virtual void writeBinary(::std::ostream &) {ERR << "Not supported for this featuretype." <<::std::endl;}
  virtual const unsigned long int calcBinarySize() const { return 0;}
  BaseFeature & operator-=(const BaseFeature &){
    ERR << "not implemented" << std::endl;
    return (*this);
  }

  // this is necessary for da factory
  template<class T>
  static BaseFeature* create() {
    return new T();
  }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值