Python画用电客户日负荷曲线图

本文介绍了如何使用Python3.6.2进行日负荷曲线的数据处理及绘图,包括数据的处理步骤和绘制曲线的具体方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python版本:Python3.6.2

一、日负荷曲线

摘自百度百科,日负荷曲线是描述一日内负荷随时间变化的曲线。

二、数据处理

数据:申请的爱尔兰开源用户用电数据,txt格式,一个文件将近400M,用写字板打开,很卡。
截取部分原始数据。数据附带的文档介绍,第一列是电表ID,第二列是时间,第三列是电量(kwh)。
其中,时间5位数,前3位表示天,后2位取值:1-48,即每半小时记录一次电表。

先导入Splunk,简单处理后,截取某一天中所有用户的用电数据:

<
### 用户负荷数据的聚类分析 对于用户负荷数据的聚类分析,K-Means聚类算法是一个常用的选择。这种算法能够有效地将相似的日负荷曲线分组在一起,从而帮助理解用户的用电模式。 #### 使用Python实现用户负荷数据的K-Means聚类 为了更好地展示如何利用Python进行此类数据分析,下面提供了一个具体的例子: ```python import numpy as np from sklearn.cluster import KMeans import matplotlib.pyplot as plt # 假设load_data是一个二维数组,每一行代表一天的负荷情况 def load_user_load_data(): # 这里应该替换为实际加载数据的方式 return np.random.rand(100, 24) def perform_kmeans_clustering(load_data, n_clusters=3): kmeans = KMeans(n_clusters=n_clusters, random_state=0).fit(load_data) labels = kmeans.labels_ centroids = kmeans.cluster_centers_ return labels, centroids def plot_results(load_data, labels, centroids): colors = ['b.', 'g.', 'r.', 'c.', 'm.'][:len(set(labels))] for i in range(len(load_data)): plt.plot(load_data[i], colors[labels[i]], alpha=0.5) for idx, centroid in enumerate(centroids): plt.plot(centroid, colors[idx], markersize=10, label=f'Cluster {idx}') plt.title('Daily Load Curves Clustering') plt.xlabel('Hour of Day') plt.ylabel('Load Value') plt.legend() plt.show() if __name__ == "__main__": user_loads = load_user_load_data() cluster_labels, cluster_centroids = perform_kmeans_clustering(user_loads, n_clusters=4) plot_results(user_loads, cluster_labels, cluster_centroids) ``` 上述代码展示了完整的流程:从获取用户每日负荷数据开始,通过`sklearn.cluster.KMeans`执行K-Means聚类操作,并最终以图形化方式呈现结果[^2]。 值得注意的是,在应用K-Means之前可能还需要对原始数据做一些预处理工作,比如标准化或归一化处理,这有助于提高模型性能和准确性[^4]。
评论 30
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值