61文章解读与程序——《基于机器学习的短期电力负荷预测和负荷曲线聚类研究》已提供下载资源

本文介绍了一种利用CatBoost和LSTM结合的集成负荷预测模型,针对CatBoost忽略负荷时序性的缺点,通过时间序列特征和Stacking策略,提出加权岭回归方法提高预测精度。文章还展示了使用Python实现的K-means和ISODATA聚类算法,以及如何通过集成学习避免过拟合问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆下载资源链接👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆

《《《《《《《《更多资源还请持续关注本专栏》》》》》》》

论文与完整源

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

电网论文源程序

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值