数组理论基础
数组是存放在连续内存空间上的相同类型数据的集合。
因为数组的在内存空间的地址是连续的,所以我们在删除或者增添元素的时候,需要移动其他元素的地址。
那么二维数组在内存的空间地址是连续的么?不同编程语言的内存管理是不一样的,以C++为例,在C++中二维数组是连续分布的。
704. 二分查找
看题解之前
二分查找,前提是有序数组。数组元素重复的话返回值不唯一
区间的定义不要改变,根据区间定义确定边界条件
使用左闭右闭
- while left <= right 左闭右闭的情况下,left==right是有效的
- if target < nums[mid]: right = mid - 1 此时mid已经不满足条件,在左闭右闭的情况下,需要移动到有效区间上
- if target > nums[mid]: left = mid + 1
- 初始化 right = len(nums) - 1
class Solution:
def search(self, nums: List[int], target: int) -> int:
# 左闭右闭区间
left = 0
right = len(nums) - 1
while left <= right:
mid = left + (right - left) // 2
if target < nums[mid]:
right = mid - 1
elif target > nums[mid]:
left = mid + 1
else:
return mid
return -1
使用左闭右开
- while left < right 左闭右开的情况下,left==right是没有意义的
- if target < nums[mid]: right = mid 此时mid不满足条件,在左闭右开的情况下,right可以移动到mid上
- if target > nums[mid]: left = mid + 1 左区间一直是有效的
- 初始化 right = len(nums)
class Solution:
def search(self, nums: List[int], target: int) -> int:
# 左闭右开区间
left = 0
right = len(nums)
while left < right:
mid = left + (right - left) // 2
if target < nums[mid]:
right = mid
elif target > nums[mid]:
left = mid + 1
else:
return mid
return -1
看题解之后
区间的定义就是不变量。要在二分查找的过程中,保持不变量,就是在while寻找中每一次边界的处理都要坚持根据区间的定义来操作,这就是循环不变量规则。
写二分法,区间的定义一般为两种,左闭右闭即[left, right],或者左闭右开即[left, right)
35.搜索插入位置
有序数组且数组元素不重复,可以使用二分查找。只有最后返回的时候不一样,返回left的值
class Solution:
def searchInsert(self, nums: List[int], target: int) -> int:
# 左闭右闭区间
left = 0
right = len(nums) - 1
while left <= right:
mid = left + (right - left) // 2
if target < nums[mid]:
right = mid - 1
elif target > nums[mid]:
left = mid + 1
else:
return mid
return left
class Solution:
def searchInsert(self, nums: List[int], target: int) -> int:
# 左闭右开区间
left = 0
right = len(nums)
while left < right:
mid = left + (right - left) // 2
if target < nums[mid]:
right = mid
elif target > nums[mid]:
left = mid + 1
else:
return mid
return left
34. 在排序数组中查找元素的第一个和最后一个位置
有序数组,但是数组元素不唯一,找到元素的第一个和最后一个位置。有序数组的话就可以使用二分查找了,重复元素会让题目变得复杂
直接看题解,先寻找左右边界,然后根据寻找到的左右边界进行判定
情况一:
target 在数组范围的右边或者左边,例如数组{3, 4, 5},target为2或者数组{3, 4, 5},target为6,此时应该返回{-1, -1}
此时代码中在寻找左右边界时有一个边界为初始值
情况二:
target 在数组范围中,且数组中不存在target,例如数组{3,6,7},target为5,此时应该返回{-1, -1}
此时代码left_border = 0, right_border = 1
情况三:
target 在数组范围中,且数组中存在target,例如数组{3,6,7},target为6,此时应该返回{1, 1}
此时代码left_border = 0, right_border = 2
class Solution:
def searchRange(self, nums: List[int], target: int) -> List[int]:
# 寻找左边界
def getLeftBorder(nums, target):
# 左闭右闭区间
left = 0
right = len(nums) - 1
left_border = -2
while left <= right:
mid = left + (right - left) // 2
if target <= nums[mid]:
right = mid - 1
left_border = right
else:
left = mid + 1
return left_border
def getRightBorder(nums, target):
# 左闭右闭区间
left = 0
right = len(nums) - 1
right_border = -2
while left <= right:
mid = left + (right - left) // 2
if target < nums[mid]:
right = mid - 1
else:
left = mid + 1
right_border = left
return right_border
left_border = getLeftBorder(nums, target)
right_border = getRightBorder(nums, target)
# 情况一
if left_border == -2 or right_border == -2:
return [-1, -1]
# 情况三
if right_border - left_border > 1:
return [left_border+1, right_border-1]
# 情况二
return [-1, -1]
69.x 的平方根
思路:使用二分查找的思路,left=0,right=x,得到mid,mid的平方和x进行比较。主要是思考返回值
class Solution:
def mySqrt(self, x: int) -> int:
left = 0
right = x
while left <= right:
mid = left + (right - left) // 2
if mid * mid > x:
right = mid - 1
elif mid * mid < x:
left = mid + 1
else:
return mid
return right
看了其中一个题解,这种提前确定答案的也比较好理解
- mid * mid > x时,mid肯定不能满足条件,r=mid-1
- mid * mid <= x时,mid有可能满足条件
class Solution:
def mySqrt(self, x: int) -> int:
l, r, ans = 0, x, -1
while l <= r:
mid = (l + r) // 2
if mid * mid <= x:
ans = mid
l = mid + 1
else:
r = mid - 1
return ans
367.有效的完全平方数
这个题目和平方根实质是一样的,更简单一点,都不用考虑返回值
class Solution:
def isPerfectSquare(self, num: int) -> bool:
left = 1
right = num
while left <= right:
mid = left + (right - left) // 2
if mid * mid == num:
return True
elif mid * mid < num:
left = mid + 1
else:
right = mid - 1
return False
27. 移除元素
暴力法:第一层循环遍历每个元素,在遇到val时,循环后移所有元素
双指针法:快指针对应循环遍历,慢指针对应排除掉val元素后的序列
class Solution:
def removeElement(self, nums: List[int], val: int) -> int:
slow = 0
for i in range(len(nums)):
if nums[i] != val:
nums[slow] = nums[i]
slow += 1
return slow
26.删除排序数组中的重复项
class Solution:
def removeDuplicates(self, nums: List[int]) -> int:
# 使用快慢指针,快指针进行循环遍历,慢指针对应删除重复元素后的序列
slow = 1
for i in range(1, len(nums)):
if nums[i] != nums[slow-1]:
nums[slow] = nums[i]
slow += 1
return slow
283.移动零
class Solution:
def moveZeroes(self, nums: List[int]) -> None:
"""
Do not return anything, modify nums in-place instead.
"""
# 和移除元素一个意思,val==0的特殊情况
slow = 0
for i in range(len(nums)):
if nums[i] != 0:
nums[slow] = nums[i]
slow += 1
# 对剩下的元素赋值为0
for i in range(slow, len(nums)):
nums[i] = 0
844.比较含退格的字符串
可以使用栈的思路;也可以从字符串后面开始比较,定义常量skip记录当前待删除的字符的数量
977.有序数组的平方
指针指向两端,数值大的放在结果数组结尾
class Solution:
def sortedSquares(self, nums: List[int]) -> List[int]:
res = [0] * len(nums)
i = 0
j = len(nums) - 1
index = j
while i <= j:
if nums[i] * nums[i] <= nums[j] * nums[j]:
res[index] = nums[j] * nums[j]
j -= 1
else:
res[index] = nums[i] * nums[i]
i += 1
index -= 1
return res