代码随想录算法训练营day1 | 704. 二分查找、27. 移除元素

文章探讨了数组的基础概念,包括内存管理中的一维和二维数组特性,重点讲解了二分查找算法(包括左闭右闭和左闭右开两种区间定义),涉及搜索插入位置、搜索范围、平方根计算、完全平方数判断以及与数组操作相关的其他问题,如移除重复元素和有序数组的特殊处理。
摘要由CSDN通过智能技术生成

数组理论基础

数组是存放在连续内存空间上的相同类型数据的集合。

因为数组的在内存空间的地址是连续的,所以我们在删除或者增添元素的时候,需要移动其他元素的地址。

那么二维数组在内存的空间地址是连续的么?不同编程语言的内存管理是不一样的,以C++为例,在C++中二维数组是连续分布的。

704. 二分查找

看题解之前

二分查找,前提是有序数组。数组元素重复的话返回值不唯一

区间的定义不要改变,根据区间定义确定边界条件

使用左闭右闭
  1. while left <= right 左闭右闭的情况下,left==right是有效的
  2. if target < nums[mid]: right = mid - 1 此时mid已经不满足条件,在左闭右闭的情况下,需要移动到有效区间上
  3. if target > nums[mid]: left = mid + 1
  4. 初始化 right = len(nums) - 1
class Solution:
    def search(self, nums: List[int], target: int) -> int:
        # 左闭右闭区间
        left = 0
        right = len(nums) - 1
        while left <= right:
            mid = left + (right - left) // 2
            if target < nums[mid]:
                right = mid - 1
            elif target > nums[mid]:
                left = mid + 1
            else:
                return mid
        return -1
使用左闭右开
  1. while left < right 左闭右开的情况下,left==right是没有意义的
  2. if target < nums[mid]: right = mid 此时mid不满足条件,在左闭右开的情况下,right可以移动到mid上
  3. if target > nums[mid]: left = mid + 1 左区间一直是有效的
  4. 初始化 right = len(nums)
class Solution:
    def search(self, nums: List[int], target: int) -> int:
        # 左闭右开区间
        left = 0
        right = len(nums)
        while left < right:
            mid = left + (right - left) // 2
            if target < nums[mid]:
                right = mid
            elif target > nums[mid]:
                left = mid + 1
            else:
                return mid
        return -1

看题解之后

区间的定义就是不变量。要在二分查找的过程中,保持不变量,就是在while寻找中每一次边界的处理都要坚持根据区间的定义来操作,这就是循环不变量规则。

写二分法,区间的定义一般为两种,左闭右闭即[left, right],或者左闭右开即[left, right)

35.搜索插入位置

有序数组且数组元素不重复,可以使用二分查找。只有最后返回的时候不一样,返回left的值

class Solution:
    def searchInsert(self, nums: List[int], target: int) -> int:
        # 左闭右闭区间
        left = 0
        right = len(nums) - 1
        while left <= right:
            mid = left + (right - left) // 2
            if target < nums[mid]:
                right = mid - 1
            elif target > nums[mid]:
                left = mid + 1
            else:
                return mid
        return left



class Solution:
    def searchInsert(self, nums: List[int], target: int) -> int:
        # 左闭右开区间
        left = 0
        right = len(nums)
        while left < right:
            mid = left + (right - left) // 2
            if target < nums[mid]:
                right = mid
            elif target > nums[mid]:
                left = mid + 1
            else:
                return mid
        return left

34. 在排序数组中查找元素的第一个和最后一个位置

有序数组,但是数组元素不唯一,找到元素的第一个和最后一个位置。有序数组的话就可以使用二分查找了,重复元素会让题目变得复杂

直接看题解,先寻找左右边界,然后根据寻找到的左右边界进行判定

情况一:

target 在数组范围的右边或者左边,例如数组{3, 4, 5},target为2或者数组{3, 4, 5},target为6,此时应该返回{-1, -1}

此时代码中在寻找左右边界时有一个边界为初始值

情况二:

target 在数组范围中,且数组中不存在target,例如数组{3,6,7},target为5,此时应该返回{-1, -1}

此时代码left_border = 0, right_border = 1

情况三:

target 在数组范围中,且数组中存在target,例如数组{3,6,7},target为6,此时应该返回{1, 1}

此时代码left_border = 0, right_border = 2

class Solution:
    def searchRange(self, nums: List[int], target: int) -> List[int]:
        # 寻找左边界
        def getLeftBorder(nums, target):
            # 左闭右闭区间
            left = 0
            right = len(nums) - 1
            left_border = -2
            while left <= right:
                mid = left + (right - left) // 2
                if target <= nums[mid]:
                    right = mid - 1
                    left_border = right
                else:
                    left = mid + 1
            return left_border

        def getRightBorder(nums, target):
            # 左闭右闭区间
            left = 0
            right = len(nums) - 1
            right_border = -2
            while left <= right:
                mid = left + (right - left) // 2
                if target < nums[mid]:
                    right = mid - 1
                else:
                    left = mid + 1
                    right_border = left
            return right_border

        left_border = getLeftBorder(nums, target)
        right_border = getRightBorder(nums, target)
        # 情况一
        if left_border == -2 or right_border == -2:
            return [-1, -1]
        # 情况三
        if right_border - left_border > 1:
            return [left_border+1, right_border-1]
        # 情况二
        return [-1, -1]

69.x 的平方根

思路:使用二分查找的思路,left=0,right=x,得到mid,mid的平方和x进行比较。主要是思考返回值

class Solution:
    def mySqrt(self, x: int) -> int:
        left = 0
        right = x
        while left <= right:
            mid = left + (right - left) // 2
            if mid * mid > x:
                right = mid - 1
            elif mid * mid < x:
                left = mid + 1
            else:
                return mid
        return right

看了其中一个题解,这种提前确定答案的也比较好理解

  • mid * mid > x时,mid肯定不能满足条件,r=mid-1
  • mid * mid <= x时,mid有可能满足条件
class Solution:
    def mySqrt(self, x: int) -> int:
        l, r, ans = 0, x, -1
        while l <= r:
            mid = (l + r) // 2
            if mid * mid <= x:
                ans = mid
                l = mid + 1
            else:
                r = mid - 1
        return ans

367.有效的完全平方数

这个题目和平方根实质是一样的,更简单一点,都不用考虑返回值

class Solution:
    def isPerfectSquare(self, num: int) -> bool:
        left = 1
        right = num
        while left <= right:
            mid = left + (right - left) // 2
            if mid * mid == num:
                return True
            elif mid * mid < num:
                left = mid + 1
            else:
                right = mid - 1
        return False

27. 移除元素

暴力法:第一层循环遍历每个元素,在遇到val时,循环后移所有元素

双指针法:快指针对应循环遍历,慢指针对应排除掉val元素后的序列

class Solution:
    def removeElement(self, nums: List[int], val: int) -> int:
        slow = 0
        for i in range(len(nums)):
            if nums[i] != val:
                nums[slow] = nums[i]
                slow += 1
        return slow

26.删除排序数组中的重复项

class Solution:
    def removeDuplicates(self, nums: List[int]) -> int:
        # 使用快慢指针,快指针进行循环遍历,慢指针对应删除重复元素后的序列
        slow = 1
        for i in range(1, len(nums)):
            if nums[i] != nums[slow-1]:
                nums[slow] = nums[i]
                slow += 1
        return slow

283.移动零

class Solution:
    def moveZeroes(self, nums: List[int]) -> None:
        """
        Do not return anything, modify nums in-place instead.
        """
        # 和移除元素一个意思,val==0的特殊情况
        slow = 0
        for i in range(len(nums)):
            if nums[i] != 0:
                nums[slow] = nums[i]
                slow += 1
        # 对剩下的元素赋值为0
        for i in range(slow, len(nums)):
            nums[i] = 0

844.比较含退格的字符串

可以使用栈的思路;也可以从字符串后面开始比较,定义常量skip记录当前待删除的字符的数量

977.有序数组的平方

指针指向两端,数值大的放在结果数组结尾

class Solution:
    def sortedSquares(self, nums: List[int]) -> List[int]:
        res = [0] * len(nums)
        i = 0
        j = len(nums) - 1
        index = j
        while i <= j:
            if nums[i] * nums[i] <= nums[j] * nums[j]:
                res[index] = nums[j] * nums[j]
                j -= 1
            else:
                res[index] = nums[i] * nums[i]
                i += 1
            index -= 1
        return res

代码随想录算法训练营是一个优质的学习和讨论平台,提供了丰富的算法训练内容和讨论交流机会。在训练营中,学员们可以通过观看视频讲解来学习算法知识,并根据讲解内容进行刷题练习。此外,训练营还提供了刷题建议,例如先看视频、了解自己所使用的编程语言、使用日志等方法来提高刷题效果和语言掌握程度。 训练营中的讨论内容非常丰富,涵盖了各种算法知识点和解题方法。例如,在第14天的训练营中,讲解了二叉树的理论基础、递归遍历、迭代遍历和统一遍历的内容。此外,在讨论中还分享了相关的博客文章和配图,帮助学员更好地理解和掌握二叉树的遍历方法。 训练营还提供了每日的讨论知识点,例如在第15天的讨论中,介绍了层序遍历的方法和使用队列来模拟一层一层遍历的效果。在第16天的讨论中,重点讨论了如何进行调试(debug)的方法,认为掌握调试技巧可以帮助学员更好地解决问题和写出正确的算法代码。 总之,代码随想录算法训练营是一个提供优质学习和讨论环境的平台,可以帮助学员系统地学习算法知识,并提供了丰富的讨论内容和刷题建议来提高算法编程能力。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [代码随想录算法训练营每日精华](https://blog.csdn.net/weixin_38556197/article/details/128462133)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值