矩阵的特征值和特征向量

定义

线性变换是指一个n维列向量被左乘一个n阶矩阵后得到另一个n维列向量,它是同维向量空间中的把一个向量线性映射成了另一个向量。

即 Y=AX(Y,X∈RnA=(aij)A=(aij)n×n)如果对于数λ,存在一个n维零列向量X(即X∈Rn且X≠0),使得AX=λX 则称数λ为矩阵A的一个特征值,X为矩阵A对应于λ的特征向量。



数学意义
矩阵乘法对应了一个变换,是把任意一个向量变成另一个方向或长度都大多不同的新向量。
在这个变换的过程中, 原向量主要发生旋转、伸缩的变化。如果矩阵对某一个向量或某些向量只发生伸缩变换,不对这些向量产生旋转的效果,那么这些向量就称为这个矩阵的特征向量,伸缩的比例就是特征值。

对对称矩阵而言,可以求得的特征向量是正交的,就是把矩阵A所代表的空间,进行正交分解,使得A的向量集合可以表示为每个向量a在各个特征向量上面的投影长度。 

例如,对于x,y平面上的一个点(x,y),我对它作线性变换A,

A =[1  0         [1   0    *  [ X    = [X 

      0   -1],       0  -1]       Y]      -Y]

这个线性变换相当于关于横轴x做镜像。我们可以求出矩阵A的特 征向量有两个[1,0]和[0,1],也就是x轴和y轴。什么意思呢?在x轴上的投影,经过这个线性变换,没有改变。在y轴上的投影, 乘以了幅度系数-1,并没有发生旋转。两个特征向量说明了这个线性变换矩阵对于x轴和y轴这两个正交基是线性不变的。对于其他的线性变换矩阵,我们也可以找到

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值