Leetcode95. 不同的二叉搜索树 II
题目:
给定一个整数 n,生成所有由 1 … n 为节点所组成的二叉搜索树。
示例:
输入: 3
输出:
[
[1,null,3,2],
[3,2,null,1],
[3,1,null,null,2],
[2,1,3],
[1,null,2,null,3]
]
解释:
以上的输出对应以下 5 种不同结构的二叉搜索树:
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
题解:
我们 n = 100 的时候,求长度是 2 的所有情况的时候,我们没必要把 [ 1 2 ] , [ 2 3 ] , [ 3 4 ] … [ 99 100 ] 所有的情况都求出来,只需要求出 [ 1 2 ] 的所有情况即可。
推广到任意长度 len,我们其实只需要求 [ 1 2 … len ] 的所有情况就可以了。下一个问题随之而来,这些 [ 2 3 ] , [ 3 4 ] … [ 99 100 ] 没求的怎么办呢?
举个例子。n = 100,此时我们求把 98 作为根节点的所有情况,根据之前的推导,我们需要长度是 97 的 [ 1 2 … 97 ] 的所有情况作为左子树,长度是 2 的 [ 99 100 ] 的所有情况作为右子树。
[ 1 2 … 97 ] 的所有情况刚好是 [ 1 2 … len ] ,已经求出来了。但 [ 99 100 ] 怎么办呢?我们只求了 [ 1 2 ] 的所有情况。答案很明显了,在 [ 1 2 ] 的所有情况每个数字加一个偏差 98,即加上根节点的值就可以了。
[ 1 2 ]
1
\
2
2
/
1
[ 99 100 ]
1 + 98
\
2 + 98
2 + 98
/
1 + 98
即
99
\
100
100
/
99
java代码:
public static List<TreeNode> generateTrees(int n) {
List<TreeNode>[] dp = new ArrayList[n + 1];
// 如果left或right为0,就会出现空指针异常。
dp[0] = new ArrayList<>();
if (n == 0) return dp[0];
// 如果不加null,那么后面当left或right为0时,就不会执行for循环。而一旦left不执行,right也会被跳过。
dp[0].add(null);
for (int len = 1; len <= n; len++) {
//把每个数字作为根节点,求出左子树,右子树所有的可能
dp[len] = new ArrayList<>();
for (int root = 1; root <= len; root++) {
int left = root - 1;
int right = len - root;
/*
假设n为5,root是3,那么左边有2个节点,所以去dp[2]里面找,右边也有两个节点4,5。所以还去dp[2]里面找。
因为只有dp[2]里面都是2个节点的数。但是dp[2]中的数只有1和2,我们要的是4,5。
我们不妨将1,2加上root,你会发现正好是4,5。
所以得到结论,左子树的值直接找前面节点数一样的dp索引,右子树的值也找前面一样的dp索引,
但是你需要加上root才能保证val是你需要的,所以右子树要重新创建,不然会破坏前面的树。
*/
// 如果dp[left]里有两种可能,dp[right]里有三种可能,那么总共有6种可能。
for (TreeNode leftTree : dp[left]) {
for (TreeNode rightTree : dp[right]) {
// 这个是每一种可能的root节点。
TreeNode newTree = new TreeNode(root);
// 左子树直接连接。
newTree.left = leftTree;
// 右子树创建一个新的树。
newTree.right = clone(root, rightTree);
dp[len].add(newTree);
}
}
}
}
return dp[n];
}
private static TreeNode clone(int value, TreeNode root) {
if (root == null) return null;
TreeNode tree = new TreeNode(value + root.value);
tree.left = clone(value, root.left);
tree.right = clone(value, root.right);
return tree;
}