Leetcode96. 不同的二叉搜索树

Leetcode96. 不同的二叉搜索树

题目:
相似题目:Leetcode95. 不同的二叉搜索树 II
给定一个整数 n,求以 1 … n 为节点组成的二叉搜索树有多少种?
示例:

输入: 3
输出: 5
解释:
给定 n = 3, 一共有 5 种不同结构的二叉搜索树:

   1         3     3      2      1
    \       /     /      / \      \
     3     2     1      1   3      2
    /     /       \                 \
   2     1         2                 3

题解:

直觉

本问题可以用动态规划求解。

给定一个有序序列 1... n 1 ... n 1...n,为了根据序列构建一棵二叉搜索树。我们可以遍历每个数字 i i i,将该数字作为树根, 1... ( i − 1 ) 1 ... (i-1) 1...(i1) 序列将成为左子树, ( i + 1 ) . . . n (i+1) ... n (i+1)...n 序列将成为右子树。于是,我们可以递归地从子序列构建子树。
在上述方法中,由于根各自不同,每棵二叉树都保证是独特的。

可见,问题可以分解成规模较小的子问题。因此,我们可以存储并复用子问题的解,而不是递归的(也重复的)解决这些子问题,这就是动态规划法。

算法

问题是计算不同二叉搜索树的个数。为此,我们可以定义两个函数:

G ( n ) G(n) G(n): 长度为n的序列的不同二叉搜索树个数。

F ( i , n ) F(i, n) F(i,n): 以i为根的不同二叉搜索树个数 ( 1 ≤ i ≤ n ) (1 \leq i \leq n) (1in)

可见,

G ( n ) G(n) G(n) 是我们解决问题需要的函数。

稍后我们将看到, G ( n ) G(n) G(n) 可以从 F ( i , n ) F(i, n) F(i,n)得到,而 F ( i , n ) F(i, n) F(i,n)又会递归的依赖于 G ( n ) G(n) G(n)

首先,根据上一节中的思路,不同的二叉搜索树的总数 G ( n ) G(n) G(n),是对遍历所有 i i i ( 1 ≤ i ≤ n ) (1 \leq i \leq n) (1in) F ( i , n ) F(i, n) F(i,n) 之和。换而言之:

G ( n ) = ∑ i = 1 n F ( i , n ) ( 1 ) G(n) = \sum_{i=1}^{n} F(i, n) \qquad \qquad (1) G(n)=i=1nF(i,n)(1)

特别的,对于边界情况,当序列长度为 1 (只有根)或为 0 (空树)时,只有一种情况。亦即:

G ( 0 ) = 1 , G ( 1 ) = 1 G(0)=1,G(1)=1 G(0)=1,G(1)=1

给定序列 1... n 1 ... n 1...n,我们选出数字 i i i 作为根,则对于根 i i i 的不同二叉搜索树数量 F ( i , n ) F(i, n) F(i,n),是左右子树个数的笛卡尔积,如下图所示:
在这里插入图片描述

举例而言, F ( 3 , 7 ) F(3, 7) F(3,7)),以 3 为根的不同二叉搜索树个数。为了以 3 为根从序列 [ 1 , 2 , 3 , 4 , 5 , 6 , 7 ] [1, 2, 3, 4, 5, 6, 7] [1,2,3,4,5,6,7] 构建二叉搜索树,我们需要从左子序列 [ 1 , 2 ] [1, 2] [1,2] 构建左子树,从右子序列 [ 4 , 5 , 6 , 7 ] [4, 5, 6, 7] [4,5,6,7] 构建右子树,然后将它们组合(即笛卡尔积)。
巧妙之处在于,我们可以将 [ 1 , 2 ] [1,2] [1,2] 构建不同左子树的数量表示为 G ( 2 ) G(2) G(2)), 从 [ 4 , 5 , 6 , 7 ] [4, 5, 6, 7] [4,5,6,7]构建不同右子树的数量表示为 G ( 4 ) G(4) G(4)。这是由于 G ( n ) G(n) G(n) 和序列的内容无关,只和序列的长度有关。于是, F ( 3 , 7 ) = G ( 2 ) ⋅ G ( 4 ) F(3,7) = G(2) \cdot G(4) F(3,7)=G(2)G(4)。 概括而言,我们可以得到以下公式:
F ( i , n ) = G ( i − 1 ) ⋅ G ( n − i ) ( 2 ) F(i, n) = G(i-1) \cdot G(n-i) \qquad \qquad (2) F(i,n)=G(i1)G(ni)(2)
将公式 (1),(2) 结合,可以得到 G(n)G(n) 的递归表达公式:
G ( n ) = ∑ i = 1 n G ( i − 1 ) ⋅ G ( n − i ) ( 3 ) G(n) = \sum_{i=1}^{n}G(i-1) \cdot G(n-i) \qquad \qquad (3) G(n)=i=1nG(i1)G(ni)(3)
为了计算函数结果,我们从小到大计算,因为 G ( n ) G(n) G(n) 的值依赖于 G ( 0 ) … G ( n − 1 ) G(0) … G(n-1) G(0)G(n1)
java代码:

 public static int numTrees(int n) {

        int[] G = new int[n + 1];
        G[0] = 1;
        G[1] = 1;

        for (int i = 2; i <= n; i++) {
            for (int j = 1; j <= i; j++) {
                G[i] += G[j - 1] * G[i - j];
            }
        }
        return G[n];
    }
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值