入门 ACMer 养成计划(转)

  ACM大量习题题库
 
ACM大量习题题库
现在网上有许多题库,大多是可以在线评测,所以叫做Online Judge。除了USACO是为IOI准备外,其余几乎全部是大学的ACM竞赛题库。
 
USACO
 
http://ace.delos.com/usacogate
 
美国著名在线题库,专门为信息学竞赛选手准备
 
 
TJU
 
http://acm.tongji.edu.cn/
 
同济大学在线题库,唯一的中文题库,适合NOIP选手
 
 
ZJU
 
http://acm.zju.edu.cn/
 
浙江大学在线题库
 
 
JLU
 
http://acm.jlu.edu.cn/
 
吉林大学在线题库(一直上不去)
 
 
PKU
 
http://acm.pku.edu.cn
 
北京大学在线题库
 
 
URAL
 
http://acm.timus.ru
 
俄罗斯乌拉尔大学在线题库
 
 
SGU
 
http://acm.sgu.ru/
 
俄罗斯圣萨拉托夫州大学在线题库
 
 
ELJ
 
http://acm.mipt.ru/judge/bin/problems.pl?lang=en
 
俄罗斯莫斯科物理技术学院
 
 
SPOJ
 
https://spoj.sphere.pl/
 
波兰格但斯克理工大学
 
 
UVA
 
http://acm.uva.es/
 
西班牙的Universidad de Valladolid在线题
 
 
ACM联系建议
 
一位高手对我的建议:
 
一般要做到50行以内的程序不用调试、100行以内的二分钟内调试成功.acm主要是考算法的
,主要时间是花在思考算法上,不是花在写程序与debug上。
下面给个计划你练练:
 
第一阶段:
练经典常用算法,下面的每个算法给我打上十到二十遍,同时自己精简代码,
因为太常用,所以要练到写时不用想,10-15分钟内打完,甚至关掉显示器都可以把程序打
出来.
1.最短路(Floyd、Dijstra,BellmanFord)
2.最小生成树(先写个prim,kruscal要用并查集,不好写)
3.大数(高精度)加减乘除
4.二分查找. (代码可在五行以内)
5.叉乘、判线段相交、然后写个凸包.
6.BFS、DFS,同时熟练hash表(要熟,要灵活,代码要简)
7.数学上的有:辗转相除(两行内),线段交点、多角形面积公式.
8. 调用系统的qsort, 技巧很多,慢慢掌握.
9. 任意进制间的转换
 
 
第二阶段:
练习复杂一点,但也较常用的算法。
如:
1. 二分图匹配(匈牙利),最小路径覆盖
2. 网络流,最小费用流。
3. 线段树.
4. 并查集。
5. 熟悉动态规划的各个典型:LCS、最长递增子串、三角剖分、记忆化dp
6.博弈类算法。博弈树,二进制法等。
7.最大团,最大独立集。
8.判断点在多边形内。
9. 差分约束系统.
10. 双向广度搜索、A*算法,最小耗散优先.
 
 
第三阶段:
前两个阶段是打基础,第三阶段是锻炼在比赛中可以快速建立模型、想新算法
。这就要平时多做做综合的题型了。
1. 把oibh上的论文看看(大概几百篇的,我只看了一点点,呵呵)。
2. 平时扫扫zoj上的难题啦,别老做那些不用想的题.(中大acm的版主经常说我挑简单的来
:-)
3. 多参加网上的比赛,感受一下比赛的气氛,评估自己的实力.
4. 一道题不要过了就算,问一下人,有更好的算法也打一下。
5. 做过的题要记好 :-)
 
 
 
ACMer必备知识(这么多呀,慢慢学了……
 
图论
 
 
 
路径问题
 
0/1边权最短路径
 
BFS
 
非负边权最短路径(Dijkstra)
 
可以用Dijkstra解决问题的特征
 
负边权最短路径
 
Bellman-Ford
 
Bellman-Ford的Yen-氏优化
 
差分约束系统
 
Floyd
 
广义路径问题
 
传递闭包
 
极小极大距离 / 极大极小距离
 
Euler Path / Tour
 
圈套圈算法
 
混合图的 Euler Path / Tour
 
Hamilton Path / Tour
 
特殊图的Hamilton Path / Tour 构造
 
 
 
生成树问题
 
最小生成树
 
第k小生成树
 
最优比率生成树
 
0/1分数规划
 
度限制生成树
 
 
 
连通性问题
 
强大的DFS算法
 
无向图连通性
 
割点
 
割边
 
二连通分支
 
有向图连通性
 
强连通分支
 
2-SAT
 
最小点基
 
 
 
有向无环图
 
拓扑排序
 
有向无环图与动态规划的关系
 
 
 
二分图匹配问题
 
一般图问题与二分图问题的转换思路
 
最大匹配
 
有向图的最小路径覆盖
 
0 / 1矩阵的最小覆盖  完备匹配 最优匹配 稳定婚姻   网络流问题 网络流模型的简单特征和与线性规划的关系  最大流最小割定理 最大流问题 有上下界的最大流问题 循环流  最小费用最大流 / 最大费用最大流
 
 
 
弦图的性质和判定
 
 
 
 
 
组合数学
 
 
 
解决组合数学问题时常用的思想
 
逼近
 
递推 / 动态规划
 
概率问题
 
Polya定理
 
 
 
 
 
计算几何 / 解析几何
 
 
 
计算几何的核心:叉积 / 面积
 
解析几何的主力:复数
 
 
 
基本形
 

 
直线,线段
 
多边形
 
 
 
凸多边形 / 凸包
 
凸包算法的引进,卷包裹法
 
 
 
Graham扫描法
 
水平序的引进,共线凸包的补丁
 
 
 
完美凸包算法
 
 
 
相关判定
 
两直线相交
 
两线段相交
 
点在任意多边形内的判定
 
点在凸多边形内的判定
 
 
 
经典问题
 
最小外接圆
 
近似O(n)的最小外接圆算法
 
点集直径
 
旋转卡壳,对踵点
 
多边形的三角剖分
 
 
 
 
 
数学 / 数论
 
 
 
最大公约数
 
Euclid算法
 
扩展的Euclid算法
 
同余方程 / 二元一次不定方程
 
同余方程组
 
 
 
线性方程组
 
高斯消元法
 
解mod 2域上的线性方程组
 
整系数方程组的精确解法
 
 
 
矩阵
 
行列式的计算
 
利用矩阵乘法快速计算递推关系
 
 
 
分数
 
分数树
 
连分数逼近
 
 
 
数论计算
 
求N的约数个数
 
求phi(N)
 
求约数和
 
快速数论变换
 
……
 
 
 
素数问题
 
概率判素算法
 
概率因子分解
 
 
 
 
 
数据结构
 
 
 
组织结构
 
二叉堆
 
左偏树
 
二项树
 
胜者树
 
跳跃表
 
样式图标
 
斜堆
 
reap
 
 
 
统计结构
 
树状数组
 
虚二叉树
 
线段树
 
矩形面积并
 
圆形面积并
 
 
 
关系结构
 
Hash表
 
并查集
 
路径压缩思想的应用
 
 
 
STL中的数据结构
 
vector
 
deque
 
set / map
 
 
 
 
 
动态规划 / 记忆化搜索
 
 
 
动态规划和记忆化搜索在思考方式上的区别
 
 
 
最长子序列系列问题
 
最长不下降子序列
 
最长公共子序列
 
最长公共不下降子序列
 
 
 
一类NP问题的动态规划解法
 
 
 
树型动态规划
 
 
 
背包问题
 
 
 
动态规划的优化
 
四边形不等式
 
函数的凸凹性
 
状态设计
 
规划方向
 
 
 
 
 
线性规划
 
 
 
常用思想
 
 
 
二分
 
最小表示法
 
 
 

 
 
 
KMP
 
Trie结构
 
后缀树/后缀数组
 
LCA/RMQ
 
有限状态自动机理论
 
 
 
排序
 
选择/冒泡
 
快速排序
 
堆排序
 
归并排序
 
基数排序
 
拓扑排序
 
排序网络
 
 
熟练掌握数据结构、常用算法汇聚
 
 
 
(一)
 
不可能都完全记住那么多的算法.
常用算法,拿过来就可以写出来
不常用的,拿起书来,看10分钟,就能理解算法(因为以前记过).
对以前没有记过的算法,就不好说了,难的可能要研究好几天.
这样就可以了.
 
应该熟练掌握的常用的算法应该有:
各种排序算法(插入排序、冒泡排序、选择排序,快速排序,堆排序,归并排序)
线性表(一般的线性表,栈,队列)的插入和删除
二叉树的遍历(前序,中序,后序)
图的遍历(深度优先,广度优先)
二分法查找,排序二叉树,Hash查找(处理冲突的方法)。
 
 
(二)
 
分析一个东西,你可以用不同的眼光去看待,有很多时候,就跟自己生活一样,觉得小时候看待问题很幼稚,现在看问题全面了,而且方式不一样了,为什么,就是成长吧,就跟这个一样的,你对算法,比如写一个程序,可能直接写很简单,可是可以有一些有趣的方式,比如通过什么样来表达,怎么样更高效..等等吧
 
 
 
(三)
 
 
 
于大学里把基本的专业课学扎实就ok,如:数据结构,离散,操作系统等。碰到一些基本的数据结构和算法,如查找排序要根据原理马上能写出相应的代码就行了,我个人是这样理解的,对于更深层次的东西,也是建立在自己熟练的基础之上的吧
 
 
 
(四)
 
算法与数据结构考验试题精析》第2版 机械工业出版社
如果你想练习的话,这里有N多的题可以来练习,但实际中能用到的比较少,除非搞一些高端的玩意,不过平时也可以在自己的项目中结合使用
 
 
 
(五)
 
 
 
数据结构在平时可能用不上,但数据结构可以培养你程序时如果注意效率的意识,一个学过数据结构的人和一个没有学过数结构的人写出来的程序可能在效率上有差别。
 
 
 
(六)
 
搞ACM需要的掌握的算法.
要注意,ACM的竞赛性强,因此自己应该和自己的实际应用联系起来.
适合自己的才是好的,有的人不适合搞算法,喜欢系统架构,因此不要看到别人什么就眼红,
发挥自己的长处,这才是重要的.
 
 
第一阶段:练经典常用算法,下面的每个算法给我打上十到二十遍,同时自己精简代码,
因为太常用,所以要练到写时不用想,10-15分钟内打完,甚至关掉显示器都可以把程序打
出来.
1.最短路(Floyd、Dijstra,BellmanFord)
2.最小生成树(先写个prim,kruscal要用并查集,不好写)
3.大数(高精度)加减乘除
4.二分查找. (代码可在五行以内)
5.叉乘、判线段相交、然后写个凸包.
6.BFS、DFS,同时熟练hash表(要熟,要灵活,代码要简)
7.数学上的有:辗转相除(两行内),线段交点、多角形面积公式.
8. 调用系统的qsort, 技巧很多,慢慢掌握.
9. 任意进制间的转换
 
第二阶段:练习复杂一点,但也较常用的算法。
如:
1. 二分图匹配(匈牙利),最小路径覆盖
2. 网络流,最小费用流。
3. 线段树.
4. 并查集。
5. 熟悉动态规划的各个典型:LCS、最长递增子串、三角剖分、记忆化dp
6.博弈类算法。博弈树,二进制法等。
7.最大团,最大独立集。
8.判断点在多边形内。
9. 差分约束系统.
10. 双向广度搜索、A*算法,最小耗散优先.
 
 
相关的知识
 
图论
 
路径问题
0/1边权最短路径
BFS
非负边权最短路径(Dijkstra)
可以用Dijkstra解决问题的特征
负边权最短路径
Bellman-Ford
Bellman-Ford的Yen-氏优化
差分约束系统
Floyd
广义路径问题
传递闭包
极小极大距离 / 极大极小距离
Euler Path / Tour
圈套圈算法
混合图的 Euler Path / Tour
Hamilton Path / Tour
特殊图的Hamilton Path / Tour 构造
 
生成树问题
最小生成树
第k小生成树
最优比率生成树
0/1分数规划
度限制生成树
 
连通性问题
强大的DFS算法
无向图连通性
割点
割边
二连通分支
有向图连通性
强连通分支
2-SAT
最小点基
 
有向无环图
拓扑排序
有向无环图与动态规划的关系
 
二分图匹配问题
一般图问题与二分图问题的转换思路
最大匹配
有向图的最小路径覆盖
0 / 1矩阵的最小覆盖
完备匹配
最优匹配
稳定婚姻
 
网络流问题
网络流模型的简单特征和与线性规划的关系
最大流最小割定理
最大流问题
有上下界的最大流问题
循环流
最小费用最大流 / 最大费用最大流
 
弦图的性质和判定
 
 
组合数学
 
解决组合数学问题时常用的思想
逼近
递推 / 动态规划
概率问题
Polya定理
 
 
计算几何 / 解析几何
 
计算几何的核心:叉积 / 面积
解析几何的主力:复数
 
基本形

直线,线段
多边形
 
凸多边形 / 凸包
凸包算法的引进,卷包裹法
 
Graham扫描法
水平序的引进,共线凸包的补丁
 
完美凸包算法
 
相关判定
两直线相交
两线段相交
点在任意多边形内的判定
点在凸多边形内的判定
 
经典问题
最小外接圆
近似O(n)的最小外接圆算法
点集直径
旋转卡壳,对踵点
多边形的三角剖分
 
 
数学 / 数论
 
最大公约数
Euclid算法
扩展的Euclid算法
同余方程 / 二元一次不定方程
同余方程组
 
线性方程组
高斯消元法
解mod 2域上的线性方程组
整系数方程组的精确解法
 
矩阵
行列式的计算
利用矩阵乘法快速计算递推关系
 
分数
分数树
连分数逼近
 
数论计算
求N的约数个数
求phi(N)
求约数和
快速数论变换
……
 
素数问题
概率判素算法
概率因子分解
 
 
数据结构
 
组织结构
二叉堆
左偏树
二项树
胜者树
跳跃表
样式图标
斜堆
reap
 
统计结构
树状数组
虚二叉树
线段树
矩形面积并
圆形面积并
 
关系结构
Hash表
并查集
路径压缩思想的应用
 
STL中的数据结构
vector
deque
set / map
 
 
动态规划 / 记忆化搜索
 
动态规划和记忆化搜索在思考方式上的区别
 
最长子序列系列问题
最长不下降子序列
最长公共子序列
最长公共不下降子序列
 
一类NP问题的动态规划解法
 
树型动态规划
 
背包问题
 
动态规划的优化
四边形不等式
函数的凸凹性
状态设计
规划方向
 
 
线性规划
 
常用思想
 
二分 最小表示法
 

 
KMP Trie结构
后缀树/后缀数组 LCA/RMQ
有限状态自动机理论
 
排序
选择/冒泡 快速排序 堆排序 归并排序
基数排序 拓扑排序 排序网络
 
 
中级:
一.基本算法:
(1)C++的标准模版库的应用. (poj3096,poj3007)
(2)较为复杂的模拟题的训练(poj3393,poj1472,poj3371,poj1027,poj2706)
二.图算法:
(1)差分约束系统的建立和求解. (poj1201,poj2983)
(2)最小费用最大流(poj2516,poj2516,poj2195)
(3)双连通分量(poj2942)
(4)强连通分支及其缩点.(poj2186)
(5)图的割边和割点(poj3352)
(6)最小割模型、网络流规约(poj3308, )
三.数据结构.
(1)线段树. (poj2528,poj2828,poj2777,poj2886,poj2750)
(2)静态二叉检索树. (poj2482,poj2352)
(3)树状树组(poj1195,poj3321)
(4)RMQ. (poj3264,poj3368)
(5)并查集的高级应用. (poj1703,2492)
(6)KMP算法. (poj1961,poj2406)
四.搜索
(1)最优化剪枝和可行性剪枝
(2)搜索的技巧和优化 (poj3411,poj1724)
(3)记忆化搜索(poj3373,poj1691)
 
五.动态规划
(1)较为复杂的动态规划(如动态规划解特别的施行商问题等)
(poj1191,poj1054,poj3280,poj2029,poj2948,poj1925,poj3034)
(2)记录状态的动态规划. (POJ3254,poj2411,poj1185)
(3)树型动态规划(poj2057,poj1947,poj2486,poj3140)
六.数学
(1)组合数学:
1.容斥原理.
2.抽屉原理.
3.置换群与Polya定理(poj1286,poj2409,poj3270,poj1026).
4.递推关系和母函数.
 
(2)数学.
1.高斯消元法(poj2947,poj1487, poj2065,poj1166,poj1222)
2.概率问题. (poj3071,poj3440)
3.GCD、扩展的欧几里德(中国剩余定理) (poj3101)
(3)计算方法.
1.0/1分数规划. (poj2976)
2.三分法求解单峰(单谷)的极值.
3.矩阵法(poj3150,poj3422,poj3070)
4.迭代逼近(poj3301)
(4)随机化算法(poj3318,poj2454)
(5)杂题.
(poj1870,poj3296,poj3286,poj1095)
七.计算几何学.
(1)坐标离散化.
(2)扫描线算法(例如求矩形的面积和周长并,常和线段树或堆一起使用).
(poj1765,poj1177,poj1151,poj3277,poj2280,poj3004)
(3)多边形的内核(半平面交)(poj3130,poj3335)
(4)几何工具的综合应用.(poj1819,poj1066,poj2043,poj3227,poj2165,poj3429)
 
 
高级:
一.基本算法要求:
(1)代码快速写成,精简但不失风格
(poj2525,poj1684,poj1421,poj1048,poj2050,poj3306)
(2)保证正确性和高效性. poj3434
二.图算法:
(1)度限制最小生成树和第K最短路. (poj1639)
(2)最短路,最小生成树,二分图,最大流问题的相关理论(主要是模型建立和求解)
(poj3155, poj2112,poj1966,poj3281,poj1087,poj2289,poj3216,poj2446
(3)最优比率生成树. (poj2728)
(4)最小树形图(poj3164)
(5)次小生成树.
(6)无向图、有向图的最小环
三.数据结构.
(1)trie图的建立和应用. (poj2778)
(2)LCA和RMQ问题(LCA(最近公共祖先问题) 有离线算法(并查集+dfs) 和 在线算法
(RMQ+dfs)).(poj1330)
(3)双端队列和它的应用(维护一个单调的队列,常常在动态规划中起到优化状态转移的
目的)(poj2823)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值