求最短路之———Floyed-Warshall算法 O(N^3)

Floyed-Warshall算法

一、   作用:1.求多源最短路径    2.判断图中两点是否相连。

算法较为简单,容易理解,但不适用数据规模很大的情况。

二、    实现方法:

设置dis[i][j]为点i到j的最短距离,初始值设为0x3f3f3f3f(最大值),设置三层循环,分为k,i,j,则dis[i][j] = min(dis[i][j],dis[i][k]+dis[k][j]);

待循环结束,则可求出各点到各点的最短距离。

三、     实现代码:

  for(int k=1;k<=n;k++)
        for(int i=1;i<=n;i++)
        if(i!=k)
        for(int j=1;j<=n;j++)
        {
            if(i!=j&&j!=k&&dis[i][j]>dis[i][k]+dis[k][j])
            dis[i][j] = dis[i][k] + dis[k][j];
        }

简单题目:   HDU - 2544

四、     Floyed-Warshall算法变形:用来判断两点是否相连

实现方法:类比第一种实现方法,把数值改为true false,待循环结束,若为dis[i][j]为false,则i与j不相连。

实现代码:

for(int k = 1; k <= n; k++)  //枚举中间点
  for(int i = 1; i <= n; i++)  //枚举端点i
    if(i != k)
      for(int j = 1; j <= n; j++)  //枚举端点j
        if(i != j && j != k)
          dis[i][j] = dis[i][j] || (dis[i][k] && dis[k][j]);(判断是否相连)

参考博文:https://blog.csdn.net/mashiro_ylb/article/details/78289790

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值