Floyed-Warshall算法
一、 作用:1.求多源最短路径 2.判断图中两点是否相连。
算法较为简单,容易理解,但不适用数据规模很大的情况。
二、 实现方法:
设置dis[i][j]为点i到j的最短距离,初始值设为0x3f3f3f3f(最大值),设置三层循环,分为k,i,j,则dis[i][j] = min(dis[i][j],dis[i][k]+dis[k][j]);
待循环结束,则可求出各点到各点的最短距离。
三、 实现代码:
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
if(i!=k)
for(int j=1;j<=n;j++)
{
if(i!=j&&j!=k&&dis[i][j]>dis[i][k]+dis[k][j])
dis[i][j] = dis[i][k] + dis[k][j];
}
简单题目: HDU - 2544
四、 Floyed-Warshall算法变形:用来判断两点是否相连
实现方法:类比第一种实现方法,把数值改为true false,待循环结束,若为dis[i][j]为false,则i与j不相连。
实现代码:
for(int k = 1; k <= n; k++) //枚举中间点
for(int i = 1; i <= n; i++) //枚举端点i
if(i != k)
for(int j = 1; j <= n; j++) //枚举端点j
if(i != j && j != k)
dis[i][j] = dis[i][j] || (dis[i][k] && dis[k][j]);(判断是否相连)
参考博文:https://blog.csdn.net/mashiro_ylb/article/details/78289790