深度学习
codedrinker
小白
展开
-
【机器学习基础】熵,交叉熵,相对熵(KL散度)联系与区别
KL散度与交叉熵区别与联系转载 2020-08-09 16:13:24 · 442 阅读 · 0 评论 -
【机器学习基础】PCA主成份分析算法
特征提取和特征选择(Feature Extraction and selection) 特征提取:主成分分析 PCA:principal component analysis 1947 特征选择:自适应提升算法 AdaBoost 1995 特征提取问题描述: 特征选择问题描述: 对于特征提取问题,nn其实也是个提取问题,这里的PCA就类似于一个单层的有M 个神经元的神经网络正在上传…重新上传取消正在上传…重新上传取消是一个向量,P是样本的个数。 A是M*N的矩阵可以看做是M个行向量, X是一原创 2020-08-07 18:48:17 · 466 阅读 · 0 评论