数据结构之二叉树 python实现

二叉树

1. 概念及主要性质

二叉树1是一种最简单的树形结构。其特点是每个节点至多关联到两个后继节点。后继节点分为左关联节点和右关联节点。

1.1 二叉树 定义

二叉树是结点的集合。这个集合为空,或者有一个根节点,其余节点分属左右两个二叉子树。
二叉树的结点有如下五种形态:
二叉树的五种形态

1.2 相关概念

空树:集合为空的二叉树。
单点树:只包含一个根结点的二叉树。
父结点、子节点:相对的概念,根结点是后续关联节点的父结点,后续关联节点是根结点的子节点。二者是一条边直接关联的。
祖先结点、子孙结点:一系列父子结点构成直系的祖先结点和子孙结点。其关联是一系列边形成的从前到后的关联。
树叶结点:没有子结点的结点。
分支结点:有子结点的结点。一个分支结点如果只有一个子节点,必须指明是左节点还是右节点。

度数:一个结点的子节点的个数,显然,二叉树的结点的度数范围为:{0,1,2}。
路径:从祖先结点到子孙结点的一系列关联的边组成一条关联路径。路径的边的条数称为路径的长度
从某一分支结点到其任意子节点都有唯一路径。
层数:规定根结点的层数为0,某一层的结点到根结点的路径长度即为层数。
高度/深度:所有结点的最大层数。

1.3 二叉树重要性质

  1. 非空二叉树的第 i i i层至多有 2 i 2^i 2i 个结点。
  2. 高度为 h h h的二叉树至多有 2 h + 1 − 1 2^{h+1}-1 2h+11个结点。
  3. 对于非空二叉树 T T T,如果其页结点的个数 n 0 n_0 n0,度数为2的结点个数为 n 2 n_2 n2,那么有: n 0 = n 2 + 1 n_0=n_2+1 n0=n2+1

1.4 特殊二叉树及其性质

  1. 满二叉树
    所有分支结点的度数都是2的二叉树。
    性质:满二叉树的叶结点数比分支结点数多1

  2. 扩充二叉树
    为二叉树T增加新的叶结点,使原有的结点的度数都为2.则该得到的二叉树为T的扩充二叉树。其中新增的结点称为外部结点,原结点称为内部结点。空树的扩充二叉树规定为空树。

  3. 完全二叉树
    对于一个高度为h的二叉树,其0到h-1层的结点度数都是2,最后一层不满的话,所有结点从最左边连续排列。空位都在右边。
    完全二叉树


  4. 任一个结点里所存的数据先于或等于其子节点里数据的完全二叉树。如果是小元素优先,则称为小顶堆,反之称为大顶堆

  5. 二叉搜索树(Binary Search Tree)
    二叉搜索树2,或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值; 它的左、右子树也分别为二叉搜索树。

    二叉搜索树作为一种经典的数据结构,它既有链表的快速插入与删除操作的特点,又有数组快速查找的优势

    在二叉搜索树中:

    • 若任意结点的左子树不空,则左子树上所有结点的值均不大于它的根结点的值。
    • 若任意结点的右子树不空,则右子树上所有结点的值均不小于它的根结点的值。
    • 任意结点的左、右子树也分别为二叉搜索树

    二叉搜索树是能够高效地进行如下操作的数据结构。

    • 插入一个数值
    • 查询是否包含某个数值
    • 删除某个数值

2. 相关算法

以下面的二叉树为例:
二叉树举例

2.1 深度优先遍历

  1. 先序遍历:根左右
    ABDHEICFJKG
  2. 后序遍历 左右根
    HDEIBJKFGCA
  3. 中序遍历 左根右
    DH B EI A JFKCG

2.2 宽度优先遍历

层次遍历法
A BCDEFGHIJK

3. python 类实现


from functools import reduce

class TreeNode:
    def __init__(self,x,left=None,right=None):
        self.val = x
        self.left = left
        self.right = right
        
    def _str(self,type='first'):
        list_node = []
        if self.val:
            str_val = str(self.val)
            str_left = self.left._str(type) if self.left else ""
            str_right = self.right._str(type) if self.right else ""
            if type == 'first':
                list_node = [str_val,str_left,str_right]
            if type == 'middle':
                list_node = [str_left,str_val,str_right]
            if type == 'last':
                list_node = [str_left,str_right,str_val]
        return reduce(lambda a,b:a+b,list_node)
        
    def __str__(self):
        s = ""
        if self.val:
            if self.left:
                s += str(self.left)
            s += str(self.val)
            if self.right:
                s += str(self.right)
        return s


if __name__ == "__main__":
    node_h = TreeNode('H')
    node_i = TreeNode('I') 
    node_j = TreeNode('J')
    node_k = TreeNode('K')

    node_d = TreeNode('D',right=node_h)
    node_f = TreeNode('F',left=node_j,right=node_k)
    node_e = TreeNode('E',right=node_i)
    node_g = TreeNode('G')

    node_b = TreeNode('B',node_d,node_e)
    node_c = TreeNode('C',node_f,node_g)

    node_a = TreeNode('A',node_b,node_c)
    
    print(node_a._str('last'))

4. LeetCode相关题目


参考资料


  1. 裘宗燕. 数据结构与算法:Python语言描述[M]. 机械工业出版社, 2016 ↩︎

  2. 百度百科:二叉搜索树 ↩︎

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页