BFS模板

本文详细介绍了在图论和树结构中常用的搜索算法——深度优先搜索(DFS)和广度优先搜索(BFS)。通过具体的代码模板,解释了两种算法的基本思想和实现过程,并提供了典型的应用场景,如拓扑排序、最短路径问题等。同时,对比了DFS和BFS在解决实际问题时的优缺点,帮助读者更好地理解和运用这两种基础而重要的算法。
摘要由CSDN通过智能技术生成
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
const int maxn=100;
bool vst[maxn][maxn]; // 访问标记
int dir[4][2]= {0,1,0,-1,1,0,-1,0}; // 方向向量

struct State // BFS 队列中的状态数据结构
{
    int x,y; // 坐标位置
    int Step_Counter; // 搜索步数统计器
};
State a[maxn];

bool CheckState(State s) // 约束条件检验
{
    if(!vst[s.x][s.y] && ...) // 满足条件
        return 1;
    else // 约束条件冲突
        return 0;
}

void bfs(State st)
{
    queue <State> q; // BFS 队列
    State now,next; // 定义2 个状态,当前和下一个
    st.Step_Counter=0; // 计数器清零
    q.push(st); // 入队
    vst[st.x][st.y]=1; // 访问标记
    while(!q.empty())
    {
        now=q.front(); // 取队首元素进行扩展
        if(now==G) // 出现目标态,此时为Step_Counter 的最小值,可以退出即可
        {
            ...... // 做相关处理
            return;
        }
        for(int i=0; i<4; i++)
        {
            next.x=now.x+dir[i][0]; // 按照规则生成下一个状态
            next.y=now.y+dir[i][1];
            next.Step_Counter=now.Step_Counter+1; // 计数器加1
            if(CheckState(next)) // 如果状态满足约束条件则入队
            {
                q.push(next);
                vst[next.x][next.y]=1; //访问标记
            }
        }
        q.pop(); // 队首元素出队
    }
    return;
}

int main()
{
    ......
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值