1. 循环移位
要注意x>>1并不改变x的值,要x >>=1
2.删除最右端的1(对于稀疏1)
x = x&(x-1) (譬如,0110,经过上式运算变为0100)
同理,x &=(x+1)删除最右边的0
3. 查表
static int bits_in_char [256] = {
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2,
3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3,
3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3,
4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4,
3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5,
6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4,
4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5,
6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5,
3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3,
4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6,
6, 7, 6, 7, 7, 8
};
int bitcount (unsigned int n)
{
// works only for 32-bit ints
return bits_in_char [n & 0xffu]
+ bits_in_char [(n >> 8) & 0xffu]
+ bits_in_char [(n >> 16) & 0xffu]
+ bits_in_char [(n >> 24) & 0xffu] ;
}
使用静态数组表,列出所有8bit(256个)无符号数含有Bit1的个数。将32Bit 的n分4部分,直接在表中找到对应的Bit1的个数,然后求和。
这是最快的方法了。缺点是需要比较大的内存。
也可以通过强制转换指针,对n分段
unsigned char *p = (unsigned char *)&n;
p[0],p[1],p[2],p[3]
4.
位加法,举例说明,考虑2位整数 n=11,里边有2个1,先提取里边的偶数位10,奇数位01,把偶数位右移1位,然后与奇数位相加,因为每对奇偶位相加的和不会超过“两位”,所以结果中每两位保存着数n中1的个数;相应的如果n是四位整数 n=0111,先以“一位”为单位做奇偶位提取,然后偶数位移位(右移1位),相加;再以“两位”为单位做奇偶提取,偶数位移位(这时就需要移2位),相加,因为此时没对奇偶位的和不会超过“四位”,所以结果中保存着n中1的个数,依次类推可以得出更多位n的算法。整个思想类似分治法。
例如:32位无符号数的1的个数可以这样数:
int count_bits(unsigned long n)
{
//0xAAAAAAAA,0x55555555分别是以“1位”为单位提取奇偶位
n = ((n & 0xAAAAAAAA) >> 1) + (n & 0x55555555);
//0xCCCCCCCC,0x33333333分别是以“2位”为单位提取奇偶位
n = ((n & 0xCCCCCCCC) >> 2) + (n & 0x33333333);
//0xF0F0F0F0,0x0F0F0F0F分别是以“4位”为单位提取奇偶位
n = ((n & 0xF0F0F0F0) >> 4) + (n & 0x0F0F0F0F);
//0xFF00FF00,0x00FF00FF分别是以“8位”为单位提取奇偶位
n = ((n & 0xFF00FF00) >> 8) + (n & 0x00FF00FF);
//0xFFFF0000,0x0000FFFF分别是以“16位”为单位提取奇偶位
n = ((n & 0xFFFF0000) >> 16) + (n & 0x0000FFFF);
return n;
}