矩阵求导计算法则

转自:http://blog.sina.com.cn/s/blog_4a033b090100pwjq.html

求导公式(撇号为转置):

Y = A * X --> DY/DX = A'
Y = X * A --> DY/DX = A
Y = A' * X * B --> DY/DX = A * B'
Y = A' * X' * B --> DY/DX = B * A'

矩阵求导计算法则 <wbr>例题乘积的导数

d(f*g)/dx=(df'/dx)g+(dg/dx)f'

 矩阵求导计算法则 <wbr>例题

矩阵求导计算法则 <wbr>例题

矩阵求导计算法则 <wbr>例题

矩阵求导计算法则 <wbr>例题  



矩阵求导计算法则 <wbr>例题 

于是把以前学过的矩阵求导部分整理一下:

1. 矩阵Y对标量x求导:

相当于每个元素求导数后转置一下,注意M×N矩阵求导后变成N×M了

Y = [y(ij)]--> dY/dx = [dy(ji)/dx]

2. 标量y对列向量X求导:

注意与上面不同,这次括号内是求偏导,不转置,对N×1向量求导后还是N×1向量

= f(x1,x2,..,xn) --> dy/dX= (Dy/Dx1,Dy/Dx2,..,Dy/Dxn)'

3. 行向量Y'对列向量X求导:

注意1×M向量对N×1向量求导后是N×M矩阵。

将Y的每一列对X求偏导,将各列构成一个矩阵。

重要结论:

dX'/dX =I

d(AX)'/dX =A'

4. 列向量Y对行向量X’求导:

转化为行向量Y’对列向量X的导数,然后转置。

注意M×1向量对1×N向量求导结果为M×N矩阵。

dY/dX' =(dY'/dX)'

5. 向量积对列向量X求导运算法则:

注意与标量求导有点不同。

d(UV')/dX =(dU/dX)V' + U(dV'/dX)

d(U'V)/dX =(dU'/dX)V + (dV'/dX)U'

重要结论:

d(X'A)/dX =(dX'/dX)A + (dA/dX)X' = IA + 0X' = A

d(AX)/dX' =(d(X'A')/dX)' = (A')' = A

d(X'AX)/dX =(dX'/dX)AX + (d(AX)'/dX)X = AX + A'X

6. 矩阵Y对列向量X求导:

将Y对X的每一个分量求偏导,构成一个超向量。

注意该向量的每一个元素都是一个矩阵。

7. 矩阵积对列向量求导法则:

d(uV)/dX =(du/dX)V + u(dV/dX)

d(UV)/dX =(dU/dX)V + U(dV/dX)

重要结论:

d(X'A)/dX =(dX'/dX)A + X'(dA/dX) = IA + X'0 = A

8. 标量y对矩阵X的导数:

类似标量y对列向量X的导数,

把y对每个X的元素求偏导,不用转置。

dy/dX = [Dy/Dx(ij) ]

重要结论:

y = U'XV= ΣΣu(i)x(ij)v(j) 于是 dy/dX = [u(i)v(j)] =UV'

y = U'X'XU 则dy/dX = 2XUU'

y =(XU-V)'(XU-V) 则 dy/dX = d(U'X'XU - 2V'XU + V'V)/dX = 2XUU' - 2VU' +0 = 2(XU-V)U'

9. 矩阵Y对矩阵X的导数:

将Y的每个元素对X求导,然后排在一起形成超级矩阵。

10.乘积的导数

d(f*g)/dx=(df'/dx)g+(dg/dx)f'

结论

d(x'Ax)=(d(x'')/dx)Ax+(d(Ax)/dx)(x'')=Ax+A'x (注意:''是表示两次转置)




Notation

  • d/dx (y) is a vector whose (i) element is dy(i)/dx
  • d/dx (y) is a vector whose (i) element is dy/dx(i)
  • d/dx (yT) is a matrix whose (i,j) element is dy(j)/dx(i)
  • d/dx (Y) is a matrix whose (i,j) element is dy(i,j)/dx
  • d/dX (y) is a matrix whose (i,j) element is dy/dx(i,j)

Note that the Hermitian transpose is not used because complex conjugates are not analytic.

In the expressions below matrices and vectors ABC do not depend on X.

Derivatives of Linear Products

  • d/dx (AYB) =A * d/dx (Y) * B
    • d/dx (Ay) =A * d/dx (y)
  • d/dx (xTA) =A
    • d/dx (xT) =I
    • d/dx (xTa) = d/dx (aTx) = a
  • d/dX (aTXb) = abT
    • d/dX (aTXa) = d/dX (aTXTa) = aaT
  • d/dX (aTXTb) = baT
  • d/dx (YZ) =Y * d/dx (Z) + d/dx (Y) * Z

Derivatives of Quadratic Products

  • d/dx (Ax+b)TC(Dx+e) = ATC(Dx+e) DTCT(Ax+b)
    • d/dx (xTCx) = (C+CT)x
      • [C: symmetric]: d/dx (xTCx) = 2Cx
      • d/dx (xTx) = 2x
    • d/dx (Ax+b)T (Dx+e) = AT (Dx+e) DT (Ax+b)
      • d/dx (Ax+b)T (Ax+b) = 2AT (Ax+b)
    • [C: symmetric]: d/dx (Ax+b)TC(Ax+b) = 2ATC(Ax+b)
  • d/dX (aTXTXb) = X(abT + baT)
    • d/dX (aTXTXa) = 2XaaT
  • d/dX (aTXTCXb) = CTXabT + CXbaT
    • d/dX (aTXTCXa) = (C + CT)XaaT
    • [C:Symmetric] d/dX (aTXTCXa) = 2CXaaT
  • d/dX ((Xa+b)TC(Xa+b)) = (C+CT)(Xa+b)aT

Derivatives of Cubic Products

  • d/dx (xTAxxT) = (A+AT)xxT+xTAxI

Derivatives of Inverses

  • d/dx (Y-1) = -Y-1d/dx (Y)Y-1

Derivative of Trace

Note: matrix dimensions must result in an n*n argument for tr().

  • d/dX (tr(X)) = I
  • d/dX (tr(Xk)) =k(Xk-1)T
  • d/dX (tr(AXk)) = SUMr=0:k-1(XrAXk-r-1)T
  • d/dX (tr(AX-1B)) = -(X-1BAX-1)T
    • d/dX (tr(AX-1)) =d/dX (tr(X-1A)) = -X-TATX-T
  • d/dX (tr(ATXBT)) = d/dX (tr(BXTA)) = AB
    • d/dX (tr(XAT)) = d/dX (tr(ATX)) =d/dX (tr(XTA)) = d/dX (tr(AXT)= A
  • d/dX (tr(AXBXT)) = ATXBT AXB
    • d/dX (tr(XAXT)) = X(A+AT)
    • d/dX (tr(XTAX)) = XT(A+AT)
    • d/dX (tr(AXTX)) = (A+AT)X
  • d/dX (tr(AXBX)) = ATXTBT BTXTAT
  • [C:symmetric] d/dX (tr((XTCX)-1A) = d/dX (tr(A (XTCX)-1) = -(CX(XTCX)-1)(A+AT)(XTCX)-1
  • [B,C:symmetric] d/dX (tr((XTCX)-1(XTBX)) = d/dX (tr( (XTBX)(XTCX)-1) = -2(CX(XTCX)-1)XTBX(XTCX)-1 + 2BX(XTCX)-1

Derivative of Determinant

Note: matrix dimensions must result in an n*n argument for det().

  • d/dX (det(X)) = d/dX (det(XT)) = det(X)*X-T
    • d/dX (det(AXB)) = det(AXB)*X-T
    • d/dX (ln(det(AXB))) = X-T
  • d/dX (det(Xk)) = k*det(Xk)*X-T
    • d/dX (ln(det(Xk))) = kX-T
  • [Real] d/dX (det(XTCX)) = det(XTCX)*(C+CT)X(XTCX)-1
    • [CReal,Symmetric] d/dX (det(XTCX)) = 2det(XTCX)* CX(XTCX)-1
  • [CReal,Symmetricc] d/dX (ln(det(XTCX))) = 2CX(XTCX)-1

Jacobian

If y is a function of x, then dyT/dx is the Jacobian matrix of y with respect to x.

Its determinant, |dyT/dx|, is the Jacobian of y with respect to x and represents the ratio of the hyper-volumes dy and dx. The Jacobian occurs when changing variables in an integration: Integral(f(y)dy)=Integral(f(y(x)) |dyT/dx| dx).

Hessian matrix

If f is a function of x then the symmetric matrix d2f/dx2 d/dxT(df/dx) is the Hessian matrix of f(x). A value of x for which df/dx 0 corresponds to a minimum, maximum or saddle point according to whether the Hessian is positive definite, negative definite or indefinite.

  • d2/dx2 (aTx) = 0
  • d2/dx2 (Ax+b)TC(Dx+e) = ATCD DTCTA
    • d2/dx2 (xTCx) = C+CT
      • d2/dx2 (xTx) = 2I
    • d2/dx2 (Ax+b)T (Dx+e) = ATD DTA
      • d2/dx2 (Ax+b)T (Ax+b) = 2ATA
    • [C: symmetric]: d2/dx2 (Ax+b)TC(Ax+b) = 2ATCA  



### 矩阵求导中的链式法则 对于矩阵求导而言,尽管不存在像向量对向量那样的通用链式法则[^1],但在处理特定类型的函数组合时仍然能够运用某些形式的链式法则。具体来说,在涉及线性变换的情况下,可以通过分解复杂的表达式成更简单的部分来进行有效的求导。 #### 特定情况下的链式法则应用 当面对由多个连续映射构成的目标函数 \(f(g(x))\) 时,如果这些映射之间存在某种线性关系,则可以利用局部的信息来构建整体梯度的关系。例如: \[ \frac{\partial f}{\partial X} = \sum_i (\frac{\partial f}{\partial Y_i}) (\frac{\partial Y_i}{\partial X}) \] 这里的 \(Y_i\) 表示中间变量或者说是隐藏层输出;\(X\) 是输入参数矩阵。这种情况下,即使不是严格意义上的全局链式法则,也可以通过累加各个路径上的贡献获得最终的结果[^2]。 #### 实际案例分析 考虑神经网络训练过程中常用的反向传播算法,其中每一层之间的权重更新都依赖于前一层传递过来的误差信号与当前层激活值的变化率之积。这一过程实际上就是在执行一种特殊的链式求导操作——即沿着网络传播方向逐步累积来自下游节点的影响并调整相应连接强度的过程[^3]。 ```python import numpy as np def backpropagation(delta, weights): """ 计算给定delta和weights下一层的delta 参数: delta (numpy.ndarray): 当前层的误差项 weights (numpy.ndarray): 权重矩阵 返回: next_delta (numpy.ndarray): 下一层的误差项 """ next_delta = np.dot(weights.T, delta) return next_delta ``` 上述代码片段展示了如何在一个两层感知器模型中实现基于链式法则的反向传播机制的一部分逻辑。这里 `np.dot` 函数用于计算两个数组间的点积,模拟了不同层次间信息流动的方式。 #### 进一步的理解 值得注意的是,为了简化复杂结构下的求导流程,引入了一些辅助概念如迹(trace),它允许我们将多元复合函数转换为更容易处理的形式。比如,当我们想要找到某个方阵A与其转置相乘后的变化趋势时,就可以借助trace特性写出简洁而直观的公式[^4]。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值