1、背景
最近,开始学习机器学习之旅。我的学习方式是:跟着斯坦福公开课Andrew Ng
的讲义和视屏开始学习。
下面,简单介绍一下线性回归下面的普通方程之矩阵求导。
对应英文章节:Linear Regression-->The normal equations-->Matrix derivatives
2、矩阵求导公式
∇AtrAB=BT ∇ A t r A B = B T (1) ( 1 )
∇ATf(A)=(∇Af(A))T ∇ A T f ( A ) = ( ∇ A f ( A ) ) T (2) ( 2 )
∇AtrABATC=CAB+CTABT ∇ A t r A B A T C = C A B + C T A B T (3) ( 3 )
∇A|A|=|A|(A−1)T ∇ A | A | = | A | ( A − 1 ) T (4) ( 4 )
3、公式推导
3.1 公式(1)的推导
知识须知: 知 识 须 知 :
1、tr为矩阵的迹,即对角线元素之和。tr既然是对角线元素之和,那么矩阵为正方形矩阵。 1 、 t r 为 矩 阵 的 迹 , 即 对 角 线 元 素 之 和 。 t r 既 然 是 对 角 线 元 素 之 和 , 那 么 矩 阵 为 正 方 形 矩 阵 。
2、∇符号为求梯度,实际上就是求导。∇A就是对A矩阵求导。 2 、 ∇ 符 号 为 求 梯 度 , 实 际 上 就 是 求 导 。 ∇ A 就 是 对 A 矩 阵 求 导 。