正规方程之矩阵求导(Matrix derivatives)

1、背景

最近,开始学习机器学习之旅。我的学习方式是:跟着斯坦福公开课Andrew Ng的讲义和视屏开始学习。

下面,简单介绍一下线性回归下面的普通方程之矩阵求导。
对应英文章节:Linear Regression-->The normal equations-->Matrix derivatives


2、矩阵求导公式

AtrAB=BT ∇ A t r A B = B T                                        (1) ( 1 )

ATf(A)=(Af(A))T ∇ A T f ( A ) = ( ∇ A f ( A ) ) T                          (2) ( 2 )

AtrABATC=CAB+CTABT ∇ A t r A B A T C = C A B + C T A B T         (3) ( 3 )

A|A|=|A|(A1)T ∇ A | A | = | A | ( A − 1 ) T                               (4) ( 4 )


3、公式推导

3.1 公式(1)的推导


: 知 识 须 知 :
1tr线tr线 1 、 t r 为 矩 阵 的 迹 , 即 对 角 线 元 素 之 和 。 t r 既 然 是 对 角 线 元 素 之 和 , 那 么 矩 阵 为 正 方 形 矩 阵 。
2AA 2 、 ∇ 符 号 为 求 梯 度 , 实 际 上 就 是 求 导 。 ∇ A 就 是 对 A 矩 阵 求 导 。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值