43、基于Doc2Vec的源代码嵌入的Bug预测及软件缺陷严重程度等级预测

基于Doc2Vec的源代码嵌入的Bug预测及软件缺陷严重程度等级预测

基于Doc2Vec的源代码嵌入的Bug预测

在软件开发中,准确预测代码中的Bug至关重要。为了方便大家复现和对比结果,相关文件可在链接 http://doi.org/10.5281/zenodo.4724941 直接获取。下面将详细介绍实验结果,通过回答三个研究问题,来深入了解基于Doc2Vec的源代码嵌入在Bug预测中的应用。

RQ1:是否存在一种Doc2Vec参数化方法,能产生比基于代码指标学习更好或相似的结果?

我们首先探究是否存在一种Doc2Vec参数化方法,用于Bug预测时能生成与使用代码指标同样有表现力的特征。由于代码指标源自源代码,所以合理的抽象语法树(AST)表示有望取得相当的效果。为找到这样的表示,我们尝试了多种Doc2Vec模型参数化方法和众多机器学习模型。

在异常检测领域,由于数据集高度不平衡,仅用准确率来衡量模型性能是不够的。更好的性能指标是召回率(找到的相关类别的比例)和精确率(找到的实例中相关的比例)。通常这两者之间存在权衡关系,例如有些模型精确率高达0.58,但召回率约为0.34;而有些模型召回率为0.7,但精确率仅为0.3。为综合考虑精确率和召回率,我们使用F分数,它是召回率和精确率的调和平均值,取值范围在0到1之间,能很好地反映模型在不平衡环境中的预测能力。

以下是基于源代码嵌入和指标学习的F分数比较:
| 模型名称 | 嵌入 | 代码指标 | 参数(向量大小,窗口大小,算法) |
| — | — | — | — |
| Bayes | 0.414 | 0.325 | 75, 4, PV - DBOW |

内容概要:本文详细介绍了一个基于CNN-GRU与AdaBoost集成的深度学习模型在时间序列预测中的完整项目实现。该模型通过卷积神经网络(CNN)提取局部时空特征,利用门控循环单元(GRU)捕捉长期时序依赖,并结合AdaBoost自适应提升算法增强模型泛化能力与鲁棒性,有效应对非线性、噪声干扰和复杂动态变化的挑战。项目涵盖从数据生成、预处理、模型构建、训练优化到结果可视化和GUI交互界面开发的全流程,提供了完整的代码示例与模块化系统架构设计,支持金融、能源、交通、医疗等多个领域的高精度预测应用。; 适合人群:具备一定Python编程基础和机器学习知识,熟悉深度学习框架(如TensorFlow/Keras)的数据科学家、算法工程师及高校研究人员,尤其适合从事时间序列分析、智能预测系统开发的相关从业者。; 使用场景及目标:①实现高精度时间序列预测,如股票价格、电力负荷、交通流量等;②构建具备强鲁棒性和抗噪能力的工业级预测系统;③开发集成深度学习与集成学习的复合模型以提升预测稳定性;④通过GUI界面实现模型的便捷部署与交互式分析。; 阅读建议:建议读者结合文档中的代码逐步实践,重点关注数据预处理、模型集成机制与可视化模块的设计逻辑,同时可在不同数据集上进行迁移实验,深入理解CNN-GRU与AdaBoost协同工作的原理与优势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值