58、双线性映射下的聚合与可验证加密签名技术解析

双线性映射下的聚合与可验证加密签名技术解析

1. 引言

在密码学领域,签名方案的安全性和效率一直是研究的重点。本文将深入探讨基于双线性映射的聚合签名和可验证加密签名方案,这些方案在提高签名效率和保障签名安全方面具有重要意义。

2. 相关基础概念
  • 双线性映射与co - Diffie - Hellman问题 :高效可计算的双线性映射 $e$ 为解决决策co - Diffie - Hellman问题提供了算法。对于元组 $(g_1, g_1^a, h, h^b)$,有 $a = b \mod p$ 当且仅当 $e(g_1, h^b) = e(g_1^a, h)$。如果两个群 $G_1$ 和 $G_2$ 是 $(t, \epsilon)$ - 双线性群用于co - Diffie - Hellman,那么它们也是 $(t/2, \epsilon)$ - co - GDH群,但反之可能不成立。
  • co - GDH签名方案 :该方案基于任意间隙群,包含三个算法:
    • 密钥生成(KeyGen) :随机选取 $x \stackrel{R}{\leftarrow} Z_p$,计算 $v \leftarrow g_1^x$。公钥为 $v \in G_1$,私钥为 $x \in Z_p$。
    • 签名(Sign) :给定私钥 $x$ 和消息 $M \in {0, 1}^*$,计算 $h \leftarrow h(M)$($h \in G_2$),$\sigma \l
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值