双线性映射下的聚合与可验证加密签名技术解析
1. 引言
在密码学领域,签名方案的安全性和效率一直是研究的重点。本文将深入探讨基于双线性映射的聚合签名和可验证加密签名方案,这些方案在提高签名效率和保障签名安全方面具有重要意义。
2. 相关基础概念
- 双线性映射与co - Diffie - Hellman问题 :高效可计算的双线性映射 $e$ 为解决决策co - Diffie - Hellman问题提供了算法。对于元组 $(g_1, g_1^a, h, h^b)$,有 $a = b \mod p$ 当且仅当 $e(g_1, h^b) = e(g_1^a, h)$。如果两个群 $G_1$ 和 $G_2$ 是 $(t, \epsilon)$ - 双线性群用于co - Diffie - Hellman,那么它们也是 $(t/2, \epsilon)$ - co - GDH群,但反之可能不成立。
- co - GDH签名方案 :该方案基于任意间隙群,包含三个算法:
- 密钥生成(KeyGen) :随机选取 $x \stackrel{R}{\leftarrow} Z_p$,计算 $v \leftarrow g_1^x$。公钥为 $v \in G_1$,私钥为 $x \in Z_p$。
- 签名(Sign) :给定私钥 $x$ 和消息 $M \in {0, 1}^*$,计算 $h \leftarrow h(M)$($h \in G_2$),$\sigma \l
订阅专栏 解锁全文
49

被折叠的 条评论
为什么被折叠?



