随机图中支配团相变及枚举度的相关研究
1. 随机图中支配团相变研究
1.1 支配团存在条件的概率分析
在随机图 (G(n, p)) 的研究中,支配团的存在条件是一个重要的研究方向。当 ((3 - \sqrt{5})/2 < p ≤ 1/2) 时,支配团的存在情况有如下结论:
- 若 (r ≥ I Ln + δ(n)),则 (r) - 节点团几乎必然是 (G) 中的支配团。
- 若 (r ≤ I Ln - δ(n)),则 (r) - 节点团几乎必然不是 (G) 中的支配团。
- 若 (r = I Ln + O(1)),则 (r) - 节点团以有限概率 (f(p)) 成为 (G) 中的支配团,其中 (f) 是一个从 ([0, 1]) 到 ([0, 1]) 的合适函数。
1.2 预备结果
为了证明相关定理,需要一些预备结果。设 (S) 是 (n) - 节点图 (G) 的一个 (r) - 节点子集,事件 (A) 表示 “(S) 是 (G(n, p)) 中的支配团”。定义 (i_{nr}) 为关联的 (0 - 1) (指示)随机变量,若 (G) 包含支配团 (S),则 (i_{nr} = 1),否则 (i_{nr} = 0)。随机变量 (X_r) 表示 (r) - 节点支配团的数量,即 (X_r = \sum i_{nr}),求和范围是所有集合 (S)。
以下是一些重要的引理:
- 引理 1 :随机变量 (X_r) 的期望 (E(X_r)) 由下式给出:
[E(X_r) = \binom{n}{r} p^{\binom{r}{2}} (1 - p^r