76、随机图中支配团相变及枚举度的相关研究

随机图中支配团相变及枚举度的相关研究

1. 随机图中支配团相变研究

1.1 支配团存在条件的概率分析

在随机图 (G(n, p)) 的研究中,支配团的存在条件是一个重要的研究方向。当 ((3 - \sqrt{5})/2 < p ≤ 1/2) 时,支配团的存在情况有如下结论:
- 若 (r ≥ I Ln + δ(n)),则 (r) - 节点团几乎必然是 (G) 中的支配团。
- 若 (r ≤ I Ln - δ(n)),则 (r) - 节点团几乎必然不是 (G) 中的支配团。
- 若 (r = I Ln + O(1)),则 (r) - 节点团以有限概率 (f(p)) 成为 (G) 中的支配团,其中 (f) 是一个从 ([0, 1]) 到 ([0, 1]) 的合适函数。

1.2 预备结果

为了证明相关定理,需要一些预备结果。设 (S) 是 (n) - 节点图 (G) 的一个 (r) - 节点子集,事件 (A) 表示 “(S) 是 (G(n, p)) 中的支配团”。定义 (i_{nr}) 为关联的 (0 - 1) (指示)随机变量,若 (G) 包含支配团 (S),则 (i_{nr} = 1),否则 (i_{nr} = 0)。随机变量 (X_r) 表示 (r) - 节点支配团的数量,即 (X_r = \sum i_{nr}),求和范围是所有集合 (S)。

以下是一些重要的引理:
- 引理 1 :随机变量 (X_r) 的期望 (E(X_r)) 由下式给出:
[E(X_r) = \binom{n}{r} p^{\binom{r}{2}} (1 - p^r

内容概要:本文详细介绍了一个基于Python实现的锂电池剩余寿命(RUL)预测项目,采用Transformer-LSTM混合深学习模型,结合GUI界面实现智能化预测与可视化分析。项目涵盖从数据生成、特征工程、模型构建(Transformer自注意力机制与LSTM时序建模融合)、训练优化、性能评估到实际部署的全流程。通过滑动窗口采样、数据归一化、多维评估指标(MSE、MAE、R²、RMSE、MAPE)及残差分析,确保模型高精与鲁棒性。同时集成注意力权重与LSTM隐状态可视化功能,提升模型可解释性,并设计了完整的GUI交互系统,支持数据加载、模型热插拔推理与预测结果动态展示。; 适合人群:具备一定Python编程基础和深学习知识,熟悉PyTorch框架的数据科学从业者、研究生及从事新能源、智能制造、电池管理系统开发的工程师。; 使用场景及目标:①应用于新能源汽车、储能电站、消费电子等领域的电池健康管理;②实现锂电池剩余寿命的高精动态预测,支持智能运维与故障预警;③为科研人员提供可复现、可扩展的深学习时序建模实例,推动电池寿命预测技术的工程化落地。; 阅读建议:建议读者结合代码与文档逐步实践,重点关注数据预处理、模型结构设计与GUI集成部分,尝试在本地环境中运行并调试程序,深入理解Transformer与LSTM协同工作机制,同时可扩展多模态输入或轻量化部署以适应更多应用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值