第二章 矩阵及其运算 第三四节 逆矩阵/矩阵分块法

§2.3 逆矩阵
§2.4 矩阵分块法

2.3 逆矩阵

  对于 n n n阶矩阵 A , A, A,如果有一个 n n n阶矩阵 B , B, B,使
A B = B A = E AB=BA=E AB=BA=E
则说矩阵 A A A可逆的,并把矩阵 B B B称为矩阵 A A A逆矩阵,简称逆阵。

定理:

若矩阵 A A A可逆,则 ∣ A ∣ ≠ 0. |A| \neq 0. A̸=0.

定理:

∣ A ∣ ≠ 0 , |A| \neq 0, A̸=0,则矩阵 A A A可逆,且
A − 1 = 1 ∣ A ∣ A ∗ , A^{-1}=\frac{1}{|A|}A^{*}, A1=A1A,
其中 A ∗ A^{*} A为矩阵 A A A的伴随矩阵。
  当 ∣ A ∣ = 0 |A|=0 A=0时, A A A称为奇异矩阵,否则称为非奇异矩阵。则 A A A是可逆矩阵的充分必要条件是 ∣ A ∣ ≠ 0 , |A| \neq 0, A̸=0,即可逆矩阵就是非奇异矩阵。

推论

A B = E ( B A = E ) , AB=E(BA=E), AB=E(BA=E), B = A − 1 . B=A^{-1}. B=A1.

运算规律

1、若 A A A可逆,则 A − 1 A^{-1} A1也可逆,且 ( A − 1 ) − 1 = A . (A^{-1})^{-1}=A. (A1)1=A.
2、若 A A A可逆,数 λ ≠ 0 , \lambda \neq 0, λ̸=0,则, λ A \lambda A λA可逆,且 ( λ A ) − 1 = 1 λ A − 1 . (\lambda A)^{-1}=\frac{1}{\lambda}A^{-1}. (λA)1=λ1A1.
3、若 A A A B B B为同阶矩阵且均可逆,则 A B AB AB亦可逆,且
( A B ) − 1 = B − 1 A − 1 . (AB)^{-1}=B^{-1}A^{-1}. (AB)1=B1A1.

  设 φ ( x ) = a 0 + a 1 x + ⋯ + a m x m \varphi(x)=a_{0}+a_{1}x+\cdots+a_{m}x^{m} φ(x)=a0+a1x++amxm
x x x m m m次多项式, A A A n n n阶矩阵,记
φ ( A ) = a 0 E + a 1 A + ⋯ + a m A m \varphi(A)=a_{0}E+a_{1}A+\cdots+a_{m}A^{m} φ(A)=a0E+a1A++amAm
φ ( A ) \varphi(A) φ(A)称为矩阵 A A A m m m次多项式。

2.4 矩阵分块法

  我们将矩阵 A A A用若干条纵线和横线分成许多个小矩阵,每一个矩阵称为 A A A的子块,以子块为元素的形式上的矩阵称为分块矩阵
分块矩阵的运算规则与普通矩阵的运算规则想类似。
  对线性方程组
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 , a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 , ⋯ ⋯ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b m , \begin{cases} a_{11}x_{1}+a_{12}x_{2}+\cdots+a_{1n}x_{n}=b_{1},\\ a_{21}x_{1}+a_{22}x_{2}+\cdots+a_{2n}x_{n}=b_{2},\\ \cdots\cdots\\ a_{m1}x_{1}+a_{m2}x_{2}+\cdots+a_{mn}x_{n}=b_{m}, \end{cases} a11x1+a12x2++a1nxn=b1,a21x1+a22x2++a2nxn=b2,am1x1+am2x2++amnxn=bm,
A = ( a i j ) , A=(a_{ij}), A=(aij), x = ( x 1 x 2 ⋮ x n ) , x=\left( \begin{matrix} x_{1}\\ x_{2}\\ \vdots\\ x_{n} \end{matrix} \right), x=x1x2xn, b = ( b 1 b 2 ⋮ x m ) , b=\left( \begin{matrix} b_{1}\\ b_{2}\\ \vdots\\ x_{m} \end{matrix} \right), b=b1b2xm, B = ( a 11 a 12 ⋯ a 1 n b 1 a 21 a 22 ⋯ a 2 n b 2 ⋮ ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a m n b m ) , B=\left( \begin{matrix} a_{11}&a_{12}&\cdots&a_{1n}&b_{1}\\ a_{21}&a_{22}&\cdots&a_{2n}&b_{2}\\ \vdots&\vdots&&\vdots&\vdots\\ a_{m1}&a_{m2}&\cdots&a_{mn}&b_{m} \end{matrix} \right), B=a11a21am1a12a22am2a1na2namnb1b2bm,
其中 A A A称为系数矩阵, x x x称为未知数向量, b b b称为常数项向量, B B B称为增广矩阵
按照分块矩阵的记法可记为:
B = ( A   ⋮   b ) , B=(A\ \vdots \ b), B=(A  b), B = ( A , b ) = ( a 1 , a 2 , ⋯   , a n , b ) . B=(A,b)=(a_{1},a_{2},\cdots,a_{n},b). B=(A,b)=(a1,a2,,an,b).
此方程可记为
A x = b , Ax=b, Ax=b,
以向量 x x x为未知源,它的解称为方程组的解向量。

克拉默法则

对于 n n n个变量, n n n个方程的线性方程组
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 , a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 , ⋯ ⋯ a n 1 x 1 + a n 2 x 2 + ⋯ + a n n x n = b n , \begin{cases} a_{11}x_{1}+a_{12}x_{2}+\cdots+a_{1n}x_{n}=b_{1},\\ a_{21}x_{1}+a_{22}x_{2}+\cdots+a_{2n}x_{n}=b_{2},\\ \cdots\cdots\\ a_{n1}x_{1}+a_{n2}x_{2}+\cdots+a_{nn}x_{n}=b_{n}, \end{cases} a11x1+a12x2++a1nxn=b1,a21x1+a22x2++a2nxn=b2,an1x1+an2x2++annxn=bn,
如果它的系数行列式 D ≠ 0 , D\neq 0, D̸=0,则它有唯一解
x j = 1 D D j = 1 D ( b j A 1 j + b 2 A 2 j + ⋯ + b n A n j ) ( j = 1 , 2 , ⋯   , n ) . x_{j}=\frac{1}{D}D_{j}=\frac{1}{D}(b_{j}A_{1j}+b_{2}A_{2j}+\cdots+b_{n}A_{nj})(j=1,2,\cdots,n). xj=D1Dj=D1(bjA1j+b2A2j++bnAnj)(j=1,2,,n).

《线性代数》同济大学第五版笔记

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值