tensorflow 循环神经网络RNN

# 定义一个 LSTM 结构,LSTM 中使用的变量会在该函数中自动被声明
lstm = tf.contrib.rnn.BasicLSTMCell(lstm_hidden_size)

# 将 LSTM 中的状态初始化为全 0 数组,batch_size 给出一个 batch 的大小
state = lstm.zero_state(batch_size, tf.float32)

# 定义损失函数
loss = 0.0

# num_steps 表示最大的序列长度
for i in range(num_steps): 
     # 在第一个时刻声明 LSTM 结构中使用的变量,在之后的时刻都需要服用之前定义好的变量
     if i>0: 
         tf.get_variable_scope().reuse_variables() 

          # 每一步处理时间序列中的一个时刻。将当前输入(current_input)和前一时刻状态(state)传入定义的 LSTM 结构就可以得到当前 LSTM 结构的输出 lstm_output 和更               新后的状态 
      state lstm_output, state = lstm(current_input, state) 

     # 将当前时刻 LSTM 结构的输出传入一个全连接层得到最后的输出 
     final_output = fully_connected(lstm_output) 
 
     # 计算当前时刻输出的损失
     loss += calc_loss(final_output, expected_output)





链接:http://www.jianshu.com/p/3dbeb3ab9aa3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>