基于Matlab的车牌识别系统

本文详细介绍了基于MATLAB的车牌识别系统的设计原理、步骤和各模块实现,包括图像预处理、车牌定位、字符分割和识别。通过图像处理技术如灰度化、二值化、边缘检测和形态学操作提取车牌,再利用神经网络进行字符识别,实现对车牌号码的自动识别。
摘要由CSDN通过智能技术生成

摘要:车牌识别技术是智能交通系统的重要组成部分,在近年来得到了很大的发展。本文从预处理、边缘检测、车牌定位、字符分割、字符识别五个方面,具体介绍了车牌自动识别的原理。并用MATLAB软件编程来实现每一个部分,最后识别出汽车车牌。


一、设计原理

车辆车牌识别系统的基本工作原理为:将摄像头拍摄到的包含车辆车牌的图像通过视频卡输入到计算机中进行预处理,再由检索模块对车牌进行搜索、检测、定位,并分割出包含车牌字符的矩形区域,然后对车牌字符进行二值化并将其分割为单个字符,然后输入JPEG或BMP格式的数字,输出则为车牌号码的数字。车牌自动识别是一项利用车辆的动态视频或静态图像进行车牌号码、车牌颜色自动识别的模式识别技术。其硬件基础一般包括触发设备、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。某些车牌识别系统还具有通过视频图像判断车辆驶入视野的功能称之为视频车辆检测。一个完整的车牌识别系统应包括车辆检测、图像采集、车牌识别等几部分。当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。车牌识别单元对图像进行处理,定位出车牌位置,再将车牌中的字符分割出来进行识别,然后组成车牌号码输出。

二、设计步骤

总体步骤为:

车辆→图像采集→图像预处理→车牌定位

→字符分割→字符定位→输出结果

基本的步骤:

a.车牌定位,定位图片中的车牌位置;

b.车牌字符分割,把车牌中的字符分割出来;

c.车牌字符识别,把分割好的字符进行识别,最终组成车牌号码。

  车牌识别过程中,车牌颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。

(1)车牌定位:

自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定车牌区域是整个识别过程的关键。首先对采集到的视频图像进行大范围相关搜索,找到符合汽车车牌特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳的区域作为车牌区域,并将其从图象中分割出来。

流程图:

v2-60be89bcf564ecc4b452961542220ac9_b.png


(2)车牌字符分割 :

完成车牌区域的定位后,再将车牌区域分割成单个字符,然后进行识别。字符分割一般采用垂直投影法。由于字符在垂直方向上的投影必然在字符间或字符内的间隙处取得局部最小值的附近,并且这个位置应满足车牌的字符书写格式、字符、尺寸限制和一些其他条件。利用垂直投影法对复杂环境下的汽车图像中的字符分割有较好的效果。

流程图:

v2-5424625f3fd19a2807f94dd0103599b4_b.png


(3)车牌字符识别 :

字符识别方法目前主要有基于模板匹配算法和基于人工神经网络算法。基于模板匹配算法首先将分割后的字符二值化,并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,最后选最佳匹配作为结果。基于人工神经元网络的算法有两种:一种是先对待识别字符进行特征提取,然后用所获得特征来训练神经网络分配器;另一种方法是直接把待处理图像输入网络,由网络自动实现特征提取直至识别出结果。实际应用中,车牌识别系统的识别率与车牌质量和拍摄质量密切相关。车牌质量会受到各种因素的影响,如生锈、污损、油漆剥落、字体褪色、车牌被遮挡、车牌倾斜、高亮反光、多车牌、假车牌等等;实际拍摄过程也会受到环境亮度、拍摄亮度、车辆速度等等因素的影响。这些影响因素不同程度上降低了车牌识别的识别率,也正是车牌识别系统的困难和挑战所在。为了提高识别率,除了不断的完善识别算法,还应该想办法克服各种光照条件,使采集到的图像最利于识别。

流程图:

v2-2dfa6af7a630e7ee914d9b159a4d8306_b.png

三 各模块的实现:

3.1输入待处理的原始图像:

clear ;

close all;

%Step1 获取图像 装入待处理彩色图像并显示原始图像

Scolor = imread('3.jpg');%imread函数读取图像文件


v2-5e2cefed512f830c9c5a7757e021b373_b.jpg

图3.1原始图像


3.2图像的灰度化:

彩色图像包含着大量的颜色信息,不但在存储上开销很大,而且在处理上也会降低系统的执行速度,因此在对图像进行识别等处理中经常将彩色图像转变为灰度图像,以加快处理速度。由彩色转换为灰度的过程叫做灰度化处理。选择的标准是经过灰度变换后,像素的动态范围增加,图像的对比度扩展,使图像变得更加清晰、细腻、容易识别。

%将彩色图像转换为黑白并显示

Sgray = rgb2gray(Scolor);%rgb2gray转换成灰度图

figure,imshow(Sgray),title('原始黑白图像');


v2-776283f145267513591556232be31b74_b.jpg

图3.2原始黑白图像

基于MATLAB车牌识别系统的完整代码如下: ```matlab %% 车牌识别系统代码 % 1. 载入已训练的车牌模板 load('license_plate_templates.mat'); % 2. 读取待识别的图像 image = imread('test_image.jpg'); % 3. 图像预处理 gray_image = rgb2gray(image); bw_image = imbinarize(gray_image, 'adaptive'); filtered_image = medfilt2(bw_image, [3, 3]); % 4. 使用模板匹配进行车牌定位 correlation = normxcorr2(license_plate_templates, filtered_image); [max_correlation, index] = max(correlation(:)); [row, col] = ind2sub(size(correlation), index); plate_image = image(row:row+size(license_plate_templates, 1)-1, col:col+size(license_plate_templates, 2)-1); % 5. 使用字符分割算法进行字符分割 [characters, bounding_boxes] = character_segmentation(plate_image); % 6. 使用字符识别算法进行字符识别 recognized_plate = ''; for i = 1:numel(characters) character = characters{i}; feature_vector = extract_features(character); recognized_character = recognize_character(feature_vector); recognized_plate = strcat(recognized_plate, recognized_character); end % 7. 输出识别结果 disp('识别结果:'); disp(recognized_plate); ``` 注意:上述代码仅展示车牌识别系统的主要步骤,并不包含完整的实现细节。实际开发过程中,需要具体实现车牌模板的训练、字符分割算法、字符识别算法等具体细节,并在代码中调用相应的函数进行实现。此外,还需要进行图像预处理、数据预处理、特征提取等操作以及其他必要的数据处理和算法优化来提高准确性和性能。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值