基于matlab的手写体数字识别系统

本文介绍了一个基于MATLAB的BP神经网络手写体数字识别系统。通过特征提取、训练集划分和神经网络训练,实现了高准确率的识别。实验中,4500张图片作为训练集,500张作为测试集,最终平均准确率为85.4%。
摘要由CSDN通过智能技术生成

摘要:随着科学技术的发展,机器学习成为一大学科热门领域,是一门专门研究计算机怎样模拟或实现人类的学习行为的交叉学科。文章在matlab软件的基础上,利用BP神经网络算法完成手写体数字的识别。

机器学习是一门多领域交叉学科,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织己有的知识结构,使之不断改善自身的性能。实现机器学习的方法多种多样,常见到的主要有神经网络算法、CNN卷积神经网络算法、RNN循环神经网络算法、EM算法、贝叶斯算法、聚类算法、回归算法、SVM等。本文将利用BP神经网络算法来完成手写体数字的识别[1]。

1总体方案

1.1题目分析

手写体数字识别的实现相对于其他元素的识别,具有许多优势。主要表现在以下几个方面:(1)涉及的识别元素数目少,仅有0〜9共10个元素;(2)训练集合背景多为纸张,受到的环境干扰小;(3)识别元素笔画简单,便于识别;(4)训练集合便于采集。

在此基础上,之所以选取BP神经网络作为工具来实现手写体数字识别,其优势主要体现在:(1)BP神经网络算法具有很强的非线性拟合能力,可以影射任何的非线性复杂关系;(2)学习规则简单,便于计算机实现[2]。

1.2总体方案设计

本次试验是识别手写体数字,大体上可以分为两个阶段来实行,分别是训练神经网络和利用神经网络进行识别(预测)。要进行本次试验,首先要下载一个手写体数字素材库,将随机选取素材库中的一部分素材作为训练样本&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值