Another kind of Fibonacci

13 篇文章 1 订阅

题目描述

As we all known , the Fibonacci series : F(0) = 1, F(1) = 1, F(N) = F(N - 1) + F(N - 2) (N >= 2).Now we define another kind of Fibonacci : A(0) = 1 , A(1) =1,A(N) = X * A(N - 1) + Y * A(N - 2) (N >= 2).And we want to Calculate S(N) , S(N) = A(0)2 +A(1)2+……+A(n)2.
.

输入

第一行输入一个T,表示有T组测试数据(T<=10000),
There are several test cases.Each test case will contain three integers , N, X , Y .N : 2<= N <= 231 – 1X : 2<= X <= 231– 1Y : 2<= Y <= 231 – 1

输出

For each test case , output the answer of S(n).If the answer is too big , divide it by 10007 and give me the reminder.

样例输入

2
2 1 1
3 2 3

样例输出

6
196

#include <iostream>

using namespace std;

#define MOD 10007
#define LL long long

typedef struct
{
    int data[4][4];
}M;

M m = {1,0,0,0,
        0,1,0,0,
        0,0,1,0,
        0,0,0,1};

M mul(M a, M b) {
    M res = m;
    int temp = 0;
    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j) {
            temp = 0;
            for (int k = 0; k < 4; ++k) {
                temp = (temp + (a.data[i][k]*b.data[k][j]) % MOD);
                res.data[i][j] = temp;
            }
        }
    }
    return res;
}


int quickpow(M a, int n) {
    M res = m;
    while(n)
    {
        if(n&1)
            res = mul(res, a);
        a = mul(a,a);
        n>>=1;
    }
    int ans = 0;
    for (int i = 0; i < 4; ++i) {
        ans = (ans + res.data[0][i]) % MOD;
    }

    return ans;
}

int main()
{
    int N;
    scanf("%d",&N);
    while (N--) {
        int n, x, y;
        scanf("%d %d %d",&n, &x, &y);
        x=x % MOD; y=y % MOD;
        M a{1, (x*x)%MOD, (y*y)%MOD, (2*x*y)%MOD,
            0, (x*x)%MOD, (y*y)%MOD, (2*x*y)%MOD,
            0, 1, 0, 0,
            0, x, 0, y};
        printf("%d\n",quickpow(a, n-1));
    }
    return 0;
}
    遇到这种递推的式子,想都不要想了,绝对是用矩阵快速幂来解决的!感觉做题都是套模板了!

    说简单点就是要求S(n)=∑f(n)2,其中f(n)=x*f(n-1)+y*f(n-2),且f(0)=1,f(1)=1。

首先,我们看到有f(n)=x*f(n-1)+y*f(n-2)这个式子,我想大家的第一反应一定是觉得很像斐波那契数列数列。没错,所以,再解这道题目之前,我们先来讲讲斐波那契数列的解法。

一、斐波那契数列的解法

斐波那契数列,又称黄金分割数列,指的是这样一个数列:1、1、2、3、5、8、13、21、……

在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1,Fn=F(n-1)+F(n-2)(n>=2,n∈N*)

二逼青年做法:显然可以逐项计算F(n),可以在O(n)的时间内得出答案,不过这种算法的效率太低了,一旦n是一个比较大的数必定超时无疑。

文艺青年做法:接着,数学系的同学可能第一反应就是求通项公式以期在O(1)的时间就可以得出答案。不错,斐波那契数列的通项公式是可以求的,前人已经求出来了:这里写图片描述

但是在这个式子中有无理数出现,在计算机中使用浮点数是无法精确存储的,更加无法获得模某个数以后的结果,况且像斐波那契数列正好可以求到通项公式,别的就比如本题只能望洋兴叹了。

高端大气上档次狂拽酷炫吊炸天的计算机系有为青年做法(pia~拍飞):好了,言归正传,我们来看看真正在ACM程序设计竞赛中的做法。

矩阵是一个好东西,有时候我们可以利用矩阵来简化计算。我们可以把斐波那契数列的递推式变成矩阵形式,即构造一个矩阵:这里写图片描述

记这个矩阵为A,则有:这里写图片描述

所以,我们只要求出An就可以得到Fn了,如何快速求解An,那就要用到矩阵快速幂了,可以在O(logn)时间内求解,再次不细讲,大家可以看最终的代码实现。

二、类似斐波那契数列的求法

回到本题中,观察到有f(n)=x*f(n-1)+y*f(n-2)这样一个式子,我们想利用矩阵快速幂简化运算。不过在本题中我们遇到这样一个问题,尽管有了斐波那契数列的基础f(n)是很好求,但是要求∑f(n)就不行了,因为矩阵快速幂运算是“跳”着来的,跟别谈求∑f(n)2了。这时候,我们就要拓展一下思路了。

进一步推导递推式:S(n) = ∑f(n)2 = S(n-1)+f(n)2 = S(n-1)+x2f(n-1)2+y2f(n-2)2+2xyf(n-1)f(n-2)

其他都好办,就是有一项2xyf(n-1)f(n-2)比较讨厌,那么我们就继续进一步,再写一项:f(n)*f(n-1) = (x*f(n-1)+y*f(n-2))*f(n-1) = x*f(n-1)2+y*f(n-1)*f(n-2),这样就方便构造矩阵递推了。

我们构造矩阵递推式:
这里写图片描述
这样我们就能用上矩阵快速幂了,最后只要将An-1的第一行加起来就行了

原文链接在这里~
http://www.cnblogs.com/zhangshu/archive/2011/07/20/2111276.html

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值