Auto-AD: Autonomous Hyperspectral AnomalyDetection Network Based on FullyConvolutional Autoencoder

本文提出了一种名为Auto-AD的高光谱异常检测网络,基于全卷积自动编码器,通过背景重建和异常的重建误差来识别异常。网络采用跳跃连接以提高背景重建的准确性,并设计了自适应加权损失函数来抑制异常重构,增强异常与背景的对比度。实验在多个数据集上验证了方法的有效性。
摘要由CSDN通过智能技术生成

本文是2021年TGRS的文章,题目:“Auto-AD:基于全卷积自动编码器的自主高光谱异常检测网络

摘要

高光谱异常检测是检测与周围环境不一致的观测数据,是高光谱图像处理领域的一个活跃研究方向。 本文提出了一种自主的高光谱异常检测网络(Auto-AD),其中背景由网络重建,异常表现为重建错误。 具体地说,通过具有跳跃连接的全卷积AE,可以重建背景,而异常难以重建,因为与背景相比,异常相对较小,并且在图像中出现的概率较低。 为了进一步抑制异常重建,设计了一个自适应加权损失函数,在训练过程中降低重建误差较大的潜在异常像素的权值。 结果,在重建误差图中,异常与背景有较高的对比度。 在一个公共机载数据集和两个无人机高光谱数据集上的实验结果证实了所提出的Auto-AD方法的有效性。

INTRODUCTION

高光谱异常检测任务旨在检测光谱特征与相邻背景有显著差异的观测数据。 这种观察被称为异常。 由于没有异常的先验知识[7],背景估计是高光谱异常检测的关键步骤。 近年来,自动编码器(AutoEncoders,AES)被应用于高光谱异常检测,因为AES可以学习高光谱数据的分层、抽象和高级表示。 本文提出了一种自主的高光谱异常检测网络(Auto-AD),其中背景由网络重建,异常表现为重建错误。 具体来说,考虑到高光谱图像的卷积图像生成器的结构可以捕获大量的图像统计信息,通过具有跳跃连接的全卷积AE重建背景。 另一方面,由于异常相对于背景而言相对较小,且仅在图像中出现的概率较低,因此很难用网络进行重构,从而表现为重构错误。结果,大的重建误差指示潜在的异常像素。 然而,异常被重建的概率仍然很低。 为了进一步抑制异常重构,设计了一个自适应加权损失函数,其中潜在异常像素的权值在总损失中降低。 权重在训练期间自适应地更新,因为它们是从重构误差导出的 。 贡献:1)提出了一种新的基于全卷积自编码器的高光谱异常检测框架。 具体而言,背景重建采用与原始图像相同的维数,避免了光谱信息的丢失,而异常检测采用基于重建误差的方法,避免了额外的检测器的构建。 2)提出的Auto-AD方法实现了高光谱异常的自主检测。 此外,Auto-AD方法不需要手动设置任何参数,也不涉及预处理或后处理过程。 由于所提出的网络能够准确地重建背景,异常被自动分离。 3)为了进一步抑制异常重构,提出了一种自适应加权损失函数,该函数在训练过程中降低潜在异常像素的权值。 因此,在重建误差图中,异常与背景有较高的对比度。 自适应地更新权重,因为它们是从重构误差导出的。

RELATED WORK

AE的目的是产生一个近似于输入的输出,提取输入的潜在特征。 因此,损失函数是均方根误差,并且参数可以使用ADAM算法来更新。

本文方法

在下图给出了 Auto-AD方法的流程图 。具体地说,通过具有跳跃连接的全卷积AE可以重建背景,而异常很难重建,因为与背景相比,异常相对较小,并且仅以低概率出现在图像中。 因此,大的重建误差指示潜在的异常像素。 然而,仍然存在一个问题,在训练期间异常仍然有很低的概率被重建。 为了进一步抑制异常重构,设计了自适应加权损失函数,在网络训练过程中降低潜在异常像素的权值。 相应地,在重建误差图中,异常与背景有较高的对比度。 该网络模型由两部分组成,1)基于跳跃连接的全卷积自编码器背景重建 2)自适应加权损失函数抑制异常重构。

1)基于跳跃连接的全卷积自编码器背景重建

给定一幅高光谱图像,只要估计的背景准确,分离背景后剩下的部分应该是异常。 因此,背景估计的准确性直接影响到异常检测的准确性。所提出的网络本质上是一个无监督的AE体系结构。 所谓“全卷积”是指除了批归一化、激活和上采样功能之外,网络只涉及卷积层,以便对图像的每个像素生成重建。 全卷积AE和卷积神经网络的主要区别在于,所提出的网络不涉及全连通层或池化层。 由于该网络的目标是重建高光谱图像中的每个像素向量,因此不需要为像素指定标记。 网络架构由编码器和解码器组成,如图1所示。为了简化流程图,使用七个块来表示网络结构,每个块包含一个卷积层。

编码器:编码器包含15个卷积层,每个卷积层后面跟着批归一化和一个Leakyrelu激活函数。 block#1和block#4各包含一个步幅为1的1×1卷积层。 由block#1和block#4产生的特征映射不被输入到下一卷积层,而是通过跳跃连接与解码器的相应层的特征映射连接,如图中的绿线所示。在解码过程中,跳过连接补充了网络早期层中具有空间细节的特征[37],从而提高了重建背景的空间精度。 在解码过程中,跳过连接补充了网络早期层中具有空间细节的特征,从而提高了重建背景的空间精度。 在编码器中,除了block#2中的卷积层降低了高光谱图像的维数,生成了128维的特征图外,其他卷积层不降低特征图的维数。 这意味着在编码过程中,特征映射的维数保持不变,为128。 这样就保留了光谱特征。block#2和block#5中的卷积层使用步幅为2的3×3卷积层执行空间下采样。 因此,在编码过程中,异常的特征在特征图中被削弱。 block#3包含步幅为1的3×3卷积层,紧随在每个块#2和每个块#5之后。

解码器:该解码器包含11个卷积层。 与编码器不同,解码器使用尺度为2的最近邻插值执行上采样,如图所示。每个block#6的输入是256维的特征映射,即两个128维的特征映射通过跳过连接串联。 因此,在block#6中,3×3卷积层遵循批量归一化,并且输入的256维特征映射减少到128维特征映射。 block#4包含一个步幅为1的1×1卷积层,紧随block#6之后。 最后一个块即第7块,包含一个步幅为1的1×1卷积层,通过该层,128维特征图被增加到与原始高光谱图像相同的维度。 与其他块不同的是,block#7中的卷积层后面跟着一个sigmoid激活函数。

2)自适应加权损失函数抑制异常重构

尽管全卷积AE的重建误差表明了潜在的异常,但异常仍然有低概率会被重建。 对于未加权的全卷积声AE,如图2(b)所示 ,300次迭代后,背景得到了一定程度的重建,而异常仍未得到重建。 当训练达到500次迭代时,如图所示 2(c),异常有重建的趋势。 背景在图像中占主导地位,异常发生的概率很低,因此,AE比异常更容易重建背景,这解释了图 2(b)。随着训练的进行,网络对数据的拟合程度更高,然后异常倾向于重构,这解释了图 2(c)。因此,在训练过程中如何在保持背景特征的同时抑制异常的重建是一个重要的问题。 这样,可以直接利用重构误差图进行精确的异常检测,从而避免了构造额外检测器的需要。

在本研究中,一个自适应的加权损失函数被设计为所提出的网络。 向后反馈重建误差以计算加权损失,然后向后反馈用于训练。 在训练的早期假设异常有较大的重建误差, 因此,在训练前期计算损失时,降低了重构误差较大区域的权值,这样抑制了异常的重建,实现了无异常背景重建。每个像素的重建误差可以使用以下方法计算:

其中,Xi,j表示输入的高光谱图像的像素向量,~Xi,j表示由网络重构的像素向量。 然后,通过组合所有像素的重建误差,可以获得重建误差图E

使用以下方法将重建误差图转换为权重图W:

其中小权值指示潜在的异常像素,如图中所示 2(f)。 此权重图每100次迭代更新一次。 权重映射的元素在前100次迭代中都初始化为1。 权重图减少了异常像素对总损失的贡献。 这样,随着训练过程的进行,异常避免了被网络重构。 根据权重图,建议的自适应加权损失可以使用以下方法计算:

实验与分析

1)数据集

第一组数据是由高光谱数字图像收集实验(Hydice)传感器[在美国密歇根州的一个郊区居民区收集的。 该数据集的光谱范围为400-2500纳米, 空间分辨率为每像素3米, 图像场景为80×100像素。 去除吸水区、信噪比低、质量差的谱带(1-4、76、87、101-111、136-153和198-210),共保留162个谱带。 以10辆人为车辆为异常,共17个像素,背景覆盖类型为植被、土壤、水和道路。

武汉大学遥感智能数据提取分析与应用(RSIDEA)组采集了第一个无人机载数据集--武汉大学无人机载高光谱图像(WHU-HI)站数据集(WHU-HI-Station 数据集)。 该数据集是由安装在大疆M600六旋翼无人机平台上的纳米Hyperspec可见光和近红外高光谱传感器获得的。 数据收集于2019年1月17日在中国湖北省武汉的一个卫星地球站上进行。图像的空间分辨率为每像素4厘米,图像场景为4000×600像素,比常用的高光谱异常检测数据集大得多。该图像有270个波段,光谱范围为400-1000纳米。 异常像素为1122个,占整幅图像的0.047%。 由于总数据量较大,该数据集被分成60个200×200块进行实验。

第三个数据集----武汉大学无人机载高光谱图像(WHU-HI)公园数据集(WHU-HI-Park数据集)----也由RSIDEA小组利用与WHU-HI-Station数据集相同的小型无人机载高光谱遥感系统收集。 实验区是中国河南省郑州市。 数据收集于2019年3月27日在一个城市公园进行。图像的空间分辨率为每像素8厘米。 该图像包含600×2000像素,在400-1000 nm光谱范围内有270个光谱波段。 该数据集也比常用的高光谱异常探测数据集大得多。 异常像素为1510个,占整幅图像的0.126%。 WHU-HI-PARK数据集也被分成200×200个块进行实验。

2)对比方法

用经典的全球RX探测器(GRX)、基于LRASR的异常检测方法、基于丰度和字典的低秩分解(ADLR)方法和带跳过连接的非加权全卷积AE(UAE)进行了比较。 用UAE方法进行了消融实验,验证了所提出的自适应加权损失函数的有效性。

结论

本文提出了一种基于全卷积AE(Auto-AD)的自主高光谱异常检测网络,该网络对背景进行重构,而异常则表现为重构误差。 尽管网络中较大的重构误差表明了潜在的异常,但在背景估计训练过程中,异常被重构的概率仍然很低。 为了进一步抑制异常重构,设计了一个自适应加权损失函数,通过对重构误差进行反馈,减少重构误差较大的潜在异常像素对总损失的贡献。 在一个机载数据集和两个大型无人机数据集上的实验证明了该算法的有效性。

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 8
    评论
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值