DAMA数据管理知识体系-数据建模和设计

DAMA数据管理知识体系

在这里插入图片描述

前言

该章节主要是针对DAMA数据管理知识体系的学习笔记中数据建模和设计,思维导图如下(考题10分),**本章建议多看书,我这里写的不是很详细。**如果想更进一步学习建模,最好看一些书,例如《Star Schema完全参考手册:数据仓库维度设计权威指南》、《数据仓库工具箱 维度建模权威指南(第3版)》等书。
在这里插入图片描述


数据建模和设计

1.数据建模定义

  • 数据建模是发现、分析和确定数据需求的过程,用一种称为数据模型的精确形式表示和传递这些数据需求。
  • 建模:是指表结构的设计,表是用来存储数据的

2.业务驱动因素

  • 提供有关数据的通用词汇表
  • 获取、记录组织内数据和系统的详细信息
  • 在项目中作为主要的交流沟通工具
  • 提供了应用定制、整合,甚至替换的起点

数据模型对于有效的数据管理至关重要

3.交付成果

  • 概念数据模型

    • ER图
    • 没有属性,有实体,偏向业务
  • 逻辑数据模型

    • 有实体,也有属性,偏向业务
  • 物理数据模型

  • 和技术选型是直接相关的

  • 有许多的约束和命名规范

    • 命名规范例如: a.字段里不能有空间(或者说是空格) b.长度不能超过30等
  • 概念、逻辑模型:实体、属性、关系

    物理模型:表、字段、外键

4.目标和原则

  • 目标:数据建模的目标是确认和记录不同视角对数据需求的理解,从而使应用程序与当前和未来的业务需求更加紧密地结合在一起,并为成功地 完成广泛的数据应用和管理活动奠定基础,如主数据管理和数据治理计划。良好的数据建模会降低支持成本,增加未来需求重复利用的可能性,从而降低构建新应用的成本
  • 原则:
    • 格式化。数据模型是对数据结构和数据关系的简洁定义。能够 评估当前或者理想情况下业务规则对数据的影响情况。格式化的定义赋 予数据规范的结构,减少在访问和保存数据时发生异常的概率。通过展 现数据中的结构和关系,数据模型使数据更容易被使用。
    • 范围定义。数据模型可以帮助解释数据上下文的边界,以及购 买的应用程序包、项目、方案或实施的现有系统。
    • 知识保留记录。数据模型通过以书面的形式获取知识来保存系 统或项目的企业信息。

数据模型是元数据的一种重要形式。

5.建模的数据类型

  • 类别信息。用于对事物进行分类和分配 事物类型的数据
  • 资源信息。实施操作流程所需资源的 基本数据
  • 业务事件信息。在操作过程中创 建的数据
  • 业务事件信息。详细的交易信 息通常通过销售系统(商店或在线应用)生成。它还可以通过社交媒体 系统、其他互联网交互(单〈双〉击流等)和机器上的传感器产生

6.数据模型组件

6.1 实体

  • 实体的定义:实体是一个组织收集信息的载体
  • 高质量实体的定义的基本特征:
    • 清晰
    • 准确
    • 完整

6.2 关系

  • 1:n:可以
  • n:1:可以
  • n:n:不行,违反3NF, 需要个中间表
  • 1:1:不行,两个实体要合并

在层级关系中,一个 实体最多拥有一个父实体(或称上级实体)。在关系模型中,子实体处 于关系中的“多”的一边,而父实体处于关系中的“一”的一边。在关系网 络中,一个实体可以拥有多个父实体。

6.3 属性

  • 是一种定义、描述或度量实体某方面的性质

6.4 域

  • 代表某一属性可被赋予的全部可能取值

  • 提供了一种将属性特征标准化的方法

  • 域的定义

    • 数据类型
    • 数据格式
    • 列表,例如状态值
    • 范围,例如订单时间范围
    • 基于规则,例如物品价格高于物品成本

7.数据建模方法

  • 关系建模
  • 维度建模
    • 事实表
    • 维度表
      • 星型模型
        • 没有延展,只是扁平的维度表
      • 雪花模型
        • 维度表是有层级的
  • 面向对象建模
    • 统一建模语言(UML)
  • 基于事实建模
  • 基于时间建模
  • 非关系型(NoSQL)建模
    • 文档数据库
    • 列数据库
    • 图数据库
    • 键值数据库

注:在关系建模方法中,三层模型仅适用于关系型数据库,而概念模型和逻辑型模型可适用于其他数据库。

8.规范化和逆规范化

  • 规范化:

    • 第一范式(1NF)。
    • 第二范式(2NF)。
    • 第三范式(3NF)。 确保每一个实体都没有隐藏的主键。每个属性都不依赖于键值之外的任何属性(仅依赖于完整的主键)。
  • 逆规范化

    (1)原因:最重要的是提高性能

    ①提前组合来自多个其他表的数据,以避免代价高昂的运行时连接

    ②创建更小的、预先过滤的数据副本,以减少昂贵的运行时计算和/或大型表的扫描

    ③预先计算和存储昂贵的数据计算结果,以避免运行时系统资源竞争

    (2)逆规范化只会在OLAP中使用,不会在OLTP中使用

    (3)逆规范化是牺牲空间换取时间

9. 建立数据模型

9.1 正向工程

  • 指从需求开始构建新应用程序的过程。 首先需要通过建立概念模型来理解需求的范围和核心的术语, 然后建立逻辑模型来详细描述业务过程,最后是通过具体的建表语句来实现物理模型

  • 概念–>逻辑–>物理

    ER图–DDL

    ER图–直接在数据库里建表

9.2 逆向工程

  • DDL到ER图 --直接从数据库到ER图
  • 逆向工程是记录现有数据库的过程。 物理数据建模通常是第一步

是否三个层面都需要?不是

是否一定要按照这个顺序?不是

10.命名约定的最佳实践

  • 对每种类型建模对象和数据库对象发布数据模型和数据库命名标准。命名标准对于实体、表、属性、键、视图和索引尤为重要。名称应该是唯一的并且尽可能具有描述性。
  • 逻辑名称对业务用户应具有意义,应尽可能使用完整的单词,并避免使用除最熟悉的缩写之外的单词。
  • 物理名称必须符合DBMS允许的最大长度,因此必要时将使用缩写。
  • 逻辑名称通常情况下不允许使用任何的分隔符对单词进行分隔,但物理名称通常使用下划线作为单词分隔 符。
  • **命名标准应该尽量减少跨环境的名称变化。**名称不应受其特定环境影响,如测试、QA或生产环境。

11.数据库设计中的最佳实践

DBA应牢记以下PRISM设计原则

  • 性能和易用性
  • 可重用性
  • 完整性
  • 安全性
  • 可维护性

12.度量指标

数据模型计分卡

数据模型计分卡

这个表是考试中会出现的,主要是问那一项是计分卡里没有的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值