很久没有写博客了。。。最近军训加开学,感觉刷题速度有降低,要补一补。
回归正题,正式进入数论阶段,讨论一下关于素数判定的那些事。
一类问题: 判定一个整数n(n>1)是否为素数。
算法1:
直接根据素数的定义枚举 i 从
n%i==0
n 为合数。
时间复杂度:
bool is_prime(int n) {
int i;
for(i = 2; i < n; i++)
if(n % i == 0) return false;
return true;
}
算法2:
发现若存在 i<n 使得n%i==0
,则必有n%(n/i)==0
。
所以只需枚举 i 从
时间复杂度: O(n√)
bool is_prime(int n) {
int i;
for(i = 2; i * i <= n; i++)
if(n % i == 0) return