素数判定的一些讨论(Miller-Rabin算法)

很久没有写博客了。。。最近军训加开学,感觉刷题速度有降低,要补一补。


回归正题,正式进入数论阶段,讨论一下关于素数判定的那些事。

一类问题: 判定一个整数n(n>1)是否为素数。

算法1:

直接根据素数的定义枚举 i 2 (n1) ,如果n%i==0 n 为合数。
时间复杂度: O(n)

bool is_prime(int n) {
    int i;
    for(i = 2; i < n; i++)
        if(n % i == 0) return false;
    return true;
}

算法2:

发现若存在 i<n 使得n%i==0,则必有n%(n/i)==0
所以只需枚举 i 2 sqrt(n) 即可。
时间复杂度: O(n)

bool is_prime(int n) {
    int i;
    for(i = 2; i * i <= n; i++)
        if(n % i == 0) return 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值