Lucas定理与扩展Lucas

之前看了乘法逆元(详见除法取模与逆元),发现不能处理不互质的情况,于是去找方法,最后找到了Lucas定理。。。
虽然与期待中的不一样,但是还是非常有用的。

(1)Lucas定理:

若p为素数,则有:

Cnmi=0kCnimi(modp)

n=nkpk+nk1pk1+...+n0

m=mkpk+mk1pk1+...+m0

ni,mi 即为把n,m转换成p进制后对应的第i+1位数字。
因为a的p进制的最后一位为a%p,所以原公式可以转化为:
CmnC[mp][np]×Cmmodpnmodp(modp)

这个就是我们常使用的公式。
证明:
我们可以用归纳法证明整个定理。我们有下面的式子成立:
(1+x)n(1+x)p[np](1+x)nmodp(1+xp)[np](1+x)nmodp{i=0[np]Ci[np]xpi}{j=0nmodpCjnmodpxj}(modp)

上式左右两边的x的某项 xm(mn) 的系数对模p同余。
其中左边的 xm 的系数是 Cmn 。 而由于 nmodp mmodp 都小于 p ,因此右边的xm一定是由 x[mp]p xmmodp (即 i=[mp],j=mmodp ) 相乘而得,因此有: Cmn=C[mp][np]×Cmmodpnmodp(modp)

(2)扩展Lucas:

若p不是素数,我们将p分解质因数,将 Cmn 分别按照(1)中的方法求对p的质因数的模,然后用中国剩余定理合并。
例如:
当我们需要计算 Cmnmodp ,其中 p=pq11×pq22×...×pqkk ,我们可以求出:

Cmnai(modpqii)(1<i<k)

然后对于方程组:
xai(modpqii)(1<i<k)

我们可以求出满足条件的最小的 x ,记为x0
那么我们有:
Cmnx0(modp)

但是,我们发现, pqii 并不是一个素数,它是某个素数的某次方。
下面我们介绍如何计算 Cmnmodpt(t2,p)
计算 Cmnmodpt
我们知道, Cmn=n!m!(nm)! ,若我们可以计算出 n!modpt ,我们就能计算出 m!modpt 以及 (nm)!modpt 。我们不妨设 x=n!modpt,y=m!modpt,z=(nm)!modpt, 那么答案就是 x×reverse(y,pt)×reverse(z,pt) ( reverse(a,b) 表示计算a对b的乘法逆元)。那么下面问题就转化成如何计算 n!modpt 。例如 p=3,t=2,n=19

n!=1×2×3×4×5×6×7×8×...×19=(1×2×4×5×7×8×...×16×17×19)×(3×6×9×12×15×18)=(1×2×4×5×7×8×...×16×17×19)×36×(1×2×3×4×5×6)

后面的部分恰好是 (n/p)! ,于是递归即可。前半部分是以 pt 为周期的 (1×2×4×5×7×8)(10×11×13×14×16×17)(mod9) 。下面是孤立的19,可以知道孤立出来的长度不超过 pt ,于是直接计算即可。对于最后剩下的 36 这些数我们只要计算出 n!,m!,(nm)! 里含有多少个 p (不妨设x,y,z),那么 xyz 就是 Cmn p 的个数,直接计算就行。

下面是计算Cmnmodp的代码:

#include<cstdio>
#include<algorithm>
using namespace std;

long long pow(long long a, long long b, long long p) {
    long long res = 1;
    while(b) {
        if(b&1) res = res*a%p;
        a = a*a%p;
        b >>= 1;
    }
    return res;
}

long long exgcd(long long a, long long b, long long& x, long long& y) {
    if(!b) {
        x = 1;
        y = 0;
        return a;
    }
    long long res = exgcd(b, a%b, y, x);
    y -= (a/b)*x;
    return res;
}

long long reverse(long long a, long long p) {
    long long x, y;
    exgcd(a, p, x, y);
    return (x % p + p)%p;
}

long long C(long long n, long long m, long long p) {
    if(m>n) return 0;
    long long res = 1, i, a, b;
    for(i = 1; i <= m; i++) {
        a = (n+1-i) % p;
        b = reverse(i%p, p);
        res = res*a%p*b%p;
    }
    return res;
}

long long Lucas(long long n, long long m, long long p) {
    if(m == 0) return 1;
    return Lucas(n/p, m/p, p)*C(n%p, m%p, p) % p;
}

long long cal(long long n, long long a, long long b, long long p) {
    if(!n) return 1;
    long long i, y = n/p, tmp = 1;
    for(i = 1; i <= p; i++) if(i%a) tmp = tmp*i%p;
    long long ans = pow(tmp, y, p);
    for(i = y*p+1; i <= n; i++) if(i%a) ans = ans*i%p;
    return ans * cal(n/a, a, b, p)%p;
}

long long multiLucas(long long n, long long m, long long a, long long b, long long p) {
    long long i, t1, t2, t3, s = 0, tmp;
    for(i = n; i; i/=a) s += i/a;
    for(i = m; i; i/=a) s -= i/a;
    for(i = n-m; i; i/=a) s -= i/a;
    tmp = pow(a, s, p);
    t1 = cal(n, a, b, p);
    t2 = cal(m, a, b, p);
    t3 = cal(n-m, a, b, p);
    return tmp*t1%p*reverse(t2, p)%p*reverse(t3, p)%p;
}


long long exLucas(long long n, long long m, long long p) {
    long long i, d, c, t, x, y, q[100], a[100], e = 0;
    for(i = 2; i*i <= p; i++) {
        if(p % i == 0) {
            q[++e] = 1;
            t = 0;
            while(p%i==0) {
                p /= i;
                q[e] *= i;
                t++;
            }
            if(q[e] == i) a[e] = Lucas(n, m, q[e]);
            else a[e] = multiLucas(n, m, i, t, q[e]);
        }
    }
    if(p > 1) {
        q[++e] = p;
        a[e] = Lucas(n, m, p);
    }
    for(i = 2; i <= e; i++) {
        d = exgcd(q[1], q[i], x, y);
        c = a[i]-a[1];
        if(c%d) exit(-1);
        t = q[i]/d;
        x = (c/d*x%t+t)%t;
        a[1] = q[1]*x+a[1];
        q[1] = q[1]*q[i]/d;
    }
    return a[1];
}

int main() {
    long long n, m, p;
    scanf("%lld%lld%lld", &n, &m, &p);
    printf("%lld\n", exLucas(n, m, p));
    return 0;
}

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 9
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值